Rheological behavior of denatured whey crosslinked by transglutaminase on different quantities and reaction time
DOI:
https://doi.org/10.33448/rsd-v10i7.16447Keywords:
Biofilms; Rheological properties; Transglutaminase; Denatured whey protein.Abstract
This study aimed to evaluate the rheological behavior of catalyzing the reaction of denatured whey (WPD) with the microbial transglutaminase (TG) as a function of reaction time and amount of TG. The rheological study was performed according to concentrations of 8, 14, 18, 22, and 26 U / g enzyme microbial transglutaminase and reaction times of 8, 16 and 24 hours, in which the model of Ostwald-de-Waelle ( Power law) was used to adjust the experimental data. The model showed excellent adjustment with determination coefficient values (R²) greater than 0.99. It was observed that the addition of TG provided a decrease in viscosity and increased shear rates. The increase in shear stresses was also observed and the solutions presented flow behavior indices (ⴄp) less than 1, indicating that the solutions of WPD + TG present behavior of non-Newtonian fluids of the pseudoplastic type. It was also found that the reaction times have influence on the increase in behavior index and viscosity of the solution. According to the results found, it is possible to affirm that the reaction times and the amounts of TG are decisive in the processes of obtaining quality films and gels, which can yield better products after the optimization of these factors.
References
Ahmadi, S., Razavi, S. M. A., Varidi, M. (2017). Sequential ultrasound and transglutaminase treatments improve functional, rheological, and textural properties of whey protein concentrate. Innovative Food Science and Emerging Technologies. 43, 207-215. http://dx.doi.org/10.1016/j.ifset.2017.08.013
Almeida, R. L. J., Santos, N. C., Pereira, T dos. S., Silva, V. M de. A., Ribeiro, V. H de. A., Silva, L. N., Muniz, C. E de. S., Silva, L. R. I da., Moreira, F. I. N., Monteiro, Y. G. (2020). Estudo reológico da polpa de Jabuticaba com diferentes concentrações de goma arábica. Research, Society and Development. 9 (3), 1-13. http://dx.doi.org/10.33448/rsd-v9i3.2511
Cao, C., Feng, Y., Kong, B., Sun, F., Yang, L., Liu, Q. (2021). Transglutaminase crosslinking promotes physical and oxidative stability of filled hydrogel particles based on biopolymer phase separation. International Journal of Biological Macromolecules. 172, 429-438. https://doi.org/10.1016/j.ijbiomac.2021.01.073
Djoullah, A., Husson, F., Saurel, R. (2018). Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment. Food Hydrocolloids. 77, 636-645. https://doi.org/10.1016/j.foodhyd.2017.11.005
Gauche, C., Vieira, J. T. C., Ogliari, P. J., Bordignon-Luiz, M. T. (2008). Crosslinking of milk whey proteins by transglutaminase. 43(7), 788-794. https://doi.org/10.1016/j.procbio.2008.04.004
Jiang, S., Zou, L., Hou, Y., Qian, F., Tuo, Y., Wu, X., Zhu, X., Um, G. (2020). The influence of the addition of transglutaminase at different phase on the film and film forming characteristics of whey protein concentrate-carboxymethyl chitosan composite films. Food Packaging and Shelf Life. 25(100456), 1-8. https://doi.org/10.1016/j.fpsl.2020.100546
Jiang, Z., Whang, C., Li, T., Sun, D., Gao, Z., Mu, Z. (2019). Effect of ultrasound on the structure and functional properties of transglutaminase-crosslinked whey protein isolate exposed to prior heat treatment. International Dairy Journal. 88, 79–88. https://doi.org/10.1016/j.idairyj.2018.08.007
Liang, X., Ma, C., Yan, X., Zeng, H., McClements, D. J., Liu, X., Liu, F. (2020). Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocolloids. 102(105569), 1-11. https://doi.org/10.1016/j.foodhyd.2019.105569
Lima, D. B., Almeida, R. D., Pasquali, M., Borges, S. P., Fook, M. L., Lisboa, H. M. (2018). Physical characterization and modeling of chitosan/peg blends for injectable scaffolds. Carbohydrate Polymers. 189, 238-249. https://doi.org/10.1016/j.carbpol.2018.02.045
Mitschka, P (1982). Simple conversion of brookfield RVT: readings into viscosity functions
Silva, H. A., Paiva, E. G., Lisboa, H. M., Duarte, M. E. M., Mata, M. C. M., Gusmão, T. A. S., Gusmão, R. P. S. (2020). Role of chitosan and transglutaminase on the elaboration of gluten-free bread. Journal of Food Science and Technology. 57, 1877-1886. https://doi.org/10.1007/s13197-019-04223-5
Statsoft (2012), Inc. Statistica for Windows (data analysis softwaresystem), version 12.0. Computer program manual.Tulsa: Statsoft.
Wang, C., Li, T., Ma, L., Li, T., Yu, H., Hou, J., Jiang, Z. (2020). Consequences of superfine grinding treatment on structure, physicochemical and rheological properties of transglutaminase-crosslinked whey protein isolate. Food Chemistry. 309(125757), 1-8. https://doi.org/10.1016/j.foodchem.2019.125757
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Hanndson Araujo Silva; Ana Paula Trindade Rocha; Hugo Miguel Lisboa Oliveira; Gabriel Monteiro da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.