Biochar produced from poultry litter waste
DOI:
https://doi.org/10.33448/rsd-v10i11.19704Keywords:
Biomass; Residues; Briquettes; Biochar; Poultry litter.Abstract
Brazil generates substantial quantity of poultry litter waste because of its worldwide prominence in the production of broiler chickens. The volume of the poultry litter biomass generates considerable environmental impact. The objective was to characterize the biochar produced from poultry litter residue under different conditions with the aim of determining the best residence time and temperature. Poultry litter was collected after two batches of chicken breeding. Five treatments for biochar production were carried out at a temperature of 450 °C (defined by thermogravimetric analysis - TGA) and residence times of 0.5, 1, 2, 4, and 6h. The biochar produced was assessed using proximate analysis, moisture content, gravimetric yield, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and HHV (higher heating value). The results revealed that the best conditions for biochar production was 450 °C (pyrolysis) and residence time of 0.5h, with 37.21% gravimetric yield. We concluded that the biochar produced in this study is recommended for soil application but was not suitable for energy purposes because of its high ash content (up to 33.66%) and low HHV (18,907 J g-1).
References
ASTM D1102-84, Standard Test Method for Ash in Wood (2021). ASTM International, http://www.astm.org/Standards/D1102.
Barzan, R. R., Jordão, L. T., Firmano, R. F., Secato, T. R., Lima, F., Barzan, L. R., de Oliveira Jr., A., Castro, C., Crusciol, C. A. C., & Zucareli, C. (2021). Soil chemical attributes and nutritional status of soybean and maize intercropped with Urochloa under nitrogen rates. Agronomy Journal, 11, https://doi.org/10.1002/agj2.20744.
Benevides, W. S., Díaz, M. P., Guano, L. E., Pinheiro, A. R. A., Frota, L. O., Campos, W. O., & Pinto, P. W. C. (2016). Study of animal welfare through analysis and comparison of the presence of foot pad dermatitis in broilers raised in controlled environments in Brazil and Spain. Revista Brasileira de Higiene e Sanidade Animal, 10, 330-350, https://dx.doi.org/10.5935/1981-2965.20160028.
Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., & Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185, https://doi.org/10.1016/j.biombioe.2014.03.059.
Bridgwater, A. V., Czernik, S., & Piskorz, J. (2001). Chapter 80 - An overview of fast pyrolysis. In - Progress in thermochemical biomass conversion. Blackwell Science Ltd., 977-997, https://doi.org/10.1002/9780470694954.ch80.
Chan, K. Y., van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437-444, https://doi.org/10.1071/SR08036.
Chen, Y., Xu, Q., Sun, K., Han, L., Sun, H., Yang, Y., & Wang, Z. (2021). Effects of simulated diagenesis and mineral amendment on the structure, stability and imidacloprid sorption properties of biochars produced at varied temperatures. Chemosphere, 282, 121-003, https://doi.org/10.1016/j.chemosphere.2021.131003.
da Róz, A. L., Ricardo, J. F. C., Nakashima, G. T., & Santos, L. R. O., Yamaji, F. M. (2015). Maximization of fixed carbon content in biochar applied to carbon sequestration. Rev. Bras. Eng. Agríc. Ambient., 19, 810-814, https://doi.org/10.1590/1807-1929/agriambi.v19n8p810-814.
da Silva, C. J. & do Vale, A. T. (2018). Energy density model for forest species from cerrado. Rev. Caatinga, 31, 396-404. https://doi.org/10.1590/1983-21252018v31n216rc.
Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - a critical review. Science of The Total Environment, 581-582, 601-611, https://doi.org/10.1016/j.scitotenv.2016.12.169.
de Carvalho, N. R., de Barros, J. L., da Silva, D. A., Nakashima, G. T., & Yamaji, F. M. (2020). Physical an chemical characterization of biomass used as solid fuel in a boiler. Química Nova, 10, 35-40, https://dx.doi.org/10.21577/0100-4042.20170663.
de Jong, I. C., Hindle, V. A., Butterworth, A., Engel, B., Ferrari, P., Gunnink, H., Perez Moya, T., Tuyttens, F. A. M., & van Reenen, C. G. (2016). Simplifying the Welfare Quality® assessment protocol for broiler chicken welfare. Animal, 10, 117-127, https://doi.org/10.1017/S1751731115001706.
Demirbas, A. (2006). Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis, 76, 285-289, https://doi.org/10.1016/j.jaap.2005.12.012.
Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M., & Sánches-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Journal Plos One, 12, 176-884, https://doi.org/10.1371/journal.pone.0176884.
Dornelas, K. C., Mascarenhas, H. N. M., Rodrigues, H. C. S., Nascimento, R. T., Brito, A. N. S., Furtado, D. A., & Nascimento, J. W. B. (2020). Withdrawn: Chicken bed: a review on reuse, treatment and influence on ambience. Poultry Science., https://doi.org/10.1016/j.psj.2020.09.067.
Faridullah, F., Yamamoto, S., Irshad, M., Uchiyama, T., & Toshimasa, H. (2008). Phosphorus fractionation in chicken and duck litter burned at different temperatures. Soil Science., 173, 287-295, http://dx.doi.org/10.1097/SS.0b013e31816d1e5b.
Garcês, A. P. T. J., Afonso, S. M. S., Chilundo, A., & Jairoce, C.T. S. (2017). Evaluation of different litter materials for broiler production in a hot and humid environment: 2. Productive performance and carcass characteristics. Tropical Animal Health Production, 49, 369-374, https://doi.org/10.1007/s11250-016-1202-7.
Grimes, J. L., Smith, J., & Williams, C. M. (2019). Some alternative litter materials used for growing broilers and turkeys. World's Poultry Science Journal, 58 515-526, https://doi.org/10.1079/WPS20020037.
Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: an urgent problem, The Crop Journal, 4, 83-91, https://doi.org/10.1016/j.cj.2015.11.003.
IBGE – Brazilian Institute of Geografy and Statistics, Livestock production statistics: Initial results (2021). IBGE, https://biblioteca.ibge.gov.br/visualizacao/periodicos/3087/epp_pr_2021_1tri.pdf.
Junna, S., He, F., Pan, Y., & Zhang, Z. (2016). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 67, 12-22, https://doi.org/10.1080/09064710.2016.1214745.
Katsuhara, M., Rhee, J. Y., Sugimoto, G., & Chung, G. C. (2011). Early response in water relations influenced by NaCl reflects tolerance or sensitivity of barley plants to salinity stress via aquaporins. Soil Science and Plant Nutrition, 57, 50-60, https://doi.org/10.1080/00380768.2010.541870.
Kelleher, B. P., Leahy, J. J., Henihan, A. M., O'Dwyer, T. F., Sutton, D., & Leahy, M. J. (2002). Advances in poultry litter disposal technology – a review, Bioresource Technology, 83, 27-36, https://doi.org/10.1016/s0960-8524(01)00133-x.
Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer?: A review. Int. J. Environ. Res. Public Health, 16, 3521, https://doi.org/10.3390/ijerph16193521.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43, 1812-1836, https://doi.org/10.1016/j.soilbio.2011.04.022.
Li, S., Wu, A., Deng, S., & Pan, W. (2008). Effect of co-combustion of chicken litter and coal on emissions in a laboratory-scale fluidized bed combustor. Fuel, Processing Technology., 89, 7-12, https://doi.org/10.1016/j.fuproc.2007.06.003.
Lin, Y., Munroe, P., Joseph, S., Ziolkowski, A., van Zwieten, L., Kimber, S., & Rust, J. (2013). Chemical and structural analysis of enhanced biochars: Thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere, 91, 35-40, https://doi.org/10.1016/j.chemosphere.2012.11.063.
Liu, T., Wu, F., Wang, W., Chen, J., Li, Z., Dong, X., Patton, J., Pei, Z., & Zheng, H. (2011). Effeccts of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 31, 402-413, https://doi.org/10.1093/treephys/tpr019.
Macklin, K. S., Hess, J. B., & Bilgili, S. F. (2008). In-house windrow composting and its effects on foodborne pathogens. Journal of Applied Poultry Ressearch, 17, 121-127, https://doi.org/10.3382/japr.2007-00051.
Masud, M. M., Baquy, M. A., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, 110-865, https://doi.org/10.1016/j.ecoenv.2020.110865.
Padilla, E. R. D., Santos, L. R. O., da Silva, D. A., Barros, J. L., Belini, G. B., Yamaji, F. M., Souza, T. M., & Campos, C. I. (2019). Eucalyptus bark charcoal: The influence of carbonization temperature in thermal behavior. Materials Research., 22, 1-5, https://doi.org/10.1590/1980-5373-MR-2019-0371.
Parente, T. L., Lazarini, E., Caioni, S., de Souza, L. G. M., Pivetta, R. S., & Bossolani, J. W. (2016). Potassium as topdressing in maize and the residual effects on soybean grown in succession, Rev. Agroambiente On-line, 10, 193-200, http://dx.doi.org/10.18227/1982-8470ragro.v10i3.3258.
Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstocks and pyrolysis temperature for environmental and agricultural application. Science of The Total Environment, 713, 136-433, https://doi.org/10.1016/j.scitotenv.2019.136433.
Pereira, M. E., Varanda, L. D., Nakashima, G. T., Hansted, A. L. S., da Silva, D. A., Tomeleri, J. O. P., Belini, G. B., & Yamaji, F. M. (2019). Characterization of the poultry litter biomass for production of biochar. Rev. Virtual Quím., 11, 1330-1343, https://doi.org/10.21577/1984-6835.20190092.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [free e-book]. Santa Maria: UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Rogeri, D. A., Ernani, P. R., Mantovani, A., & Lourenço, K. S. (2016). Composition of poultry litter in southern Brazil, Rev. Bras. Ciênc. Solo., 40, 140-697, https://doi.org/10.1590/18069657rbcs20140697.
Shepherd, E. M., airchild, B. D., & Ritz, FC. W. (2017). Alternative bedding materials and litter depth impact litter moisture and footpad dermatitis. Journal of Applied Poultry Research., 26, 518-528, https://doi.org/10.3382/japr/pfx024.
Siefert, R. L., Scudlark, J. R., Potter, A. G., Simonsen, K. A., & Savidge, K. B. (2004). Characterization of atmospheric ammonia emissions from a commercial chicken house on the Delmarva Peninsula. Environ. Sci. Technol., 38, 2769-2778, https://doi.org/10.1021/es0345874.
Song, W. & Guo, M. (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis, 94, 138-145, https://doi.org/10.1016/j.jaap.2011.11.018.
Speratti, A. B., M. S. Johnson, H. M. Sousa, G. M., & Torres, E. G. Couto, (2017). Impact of different agricultural waste biochars on maize biomass and soil water content in a brazilian cerrado arenosol, Agronomy. 7 49, https://doi.org/10.3390/agronomy7030049.
Sweeten, J. M., Annamalai, K., Thien, B., & McDonald, L. A. (2003). Co-firing of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel, 82, 1167-1182, https://doi.org/10.1016/S0016-2361(03)00007-3.
Tańczuk, M., Junga, R., Werle, S., Chabiński, M., & Ziółkowskic, Ł. (2019). Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renewable Energy, 136, 1055-1063, https://doi.org/10.1016/j.renene.2017.05.074.
Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilization in low-carbon products: harnessing a major potential resource. Climated and Atmosperic Science, 2, 35, https://doi.org/10.1038/s41612-019-0093-5.
Usmani, Z., Sharma, M., Awasthi, A. K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V. K., Roberts, D., Newbold, J., & Gupta, V. K. (2021). Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresource Technology, 322, 124-548, https://doi.org/10.1016/j.biortech.2020.124548.
Vieites, F. M., Araújo, G. M., do Vale, P. A. C. B., Souza, C. S., Névoa, M. L., de Vargas Junior, J. G., Nunes, R. V., & Arruda, N. V. M., (2015). Minerals balance and performance of broilers at 21 days of age diet containing Solanum malacoxylon. Rev. Bras. Saúde Prod. Anim., 16, 535-543, https://doi.org/10.1590/S1519-99402015000300006.
Voss-Rech, D., Trevisol, I. M., Brentano, L., Silva, V. S., Rebelatto, R., Jaenisch, F. R. F., Okino, C. H., Mores, M. A. Z., Coldebella, A., Botton, S. A., & Vaz, C. S. L. (2017). Impact of treatments for recycled broiler litter on the viability and infectivity of microorganisms. Veterinary Microbiology., 203, 308-314, https://doi.org/10.1016/j.vetmic.2017.03.020.
Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: a state-of-art review. Progress in Energy and Combustion Science, 62, 33-86, https://doi.org/10.1016/j.pecs.2017.05.004.
Waqas, M., Abduriazaiza, A. S., Miandad, R., Rehan, M., Barakat, M., & Nizami, A. (2018). Development of biochar as fuel and catalyst in energy recovery technologies, Journal of Cleaner Production, 188, 477-488, https://doi.org/10.1016/j.jclepro.2018.04.017.
Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy, Biotechnology Reports., 28, e00570, https://doi.org/10.1016/j.btre.2020.e00570.
Yu, X. & Lu, S. (2020). Double effects of biochar in affecting the macropore system of paddy soils identified by high-resolution X-ray tomography. Science of the Total Environment, 720, 137-690, https://doi.org/10.1016/j.scitotenv.2020.137690.
Zdravkov, B., Cermák, J., Sefara, M., & Janku, J. (2017). Pore classification in the characterization of porus materials: a perspective. Open Chemistry, 5, 385-395, https://doi.org/10.2478/s11532-007-0017-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Moisés Edevaldo Pereira; Luciano Donizeti Varanda; Natália Rodrigues de Carvalho; Carlos Roberto Sette Jr; Franciane Andrade de Padua; Andrea Cressoni De Conti; Fabio Minoru Yamaji
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.