Biochar produzido a partir de resíduos de cama de frango

Autores

DOI:

https://doi.org/10.33448/rsd-v10i11.19704

Palavras-chave:

Biomassa; Resíduos; Briquetes; Biochar; Cama de frango.

Resumo

O Brasil produz uma quantidade substancial de resíduo de cama de frango devido a sua proeminência mundial na produção de frangos de corte. O volume gerado da biomassa de cama de frango gera um impacto ambiental considerável. O objetivo deste estudo foi caracterizar o biochar produzido a partir de resíduos de cama de frango em diferentes condições, com o objetivo de determinar o melhor tempo de residência e temperatura. A cama de frango foi coletada após dois lotes de criação de frangos. Foram realizados 5 tratamentos para a produção do biochar a uma temperatura de 450 °C (definida pelas análises termogravimétricas - TGA) e tempos de residência de 0,5, 1, 2, 4 e 6h. O biochar produzido foi analisado através das análises imediatas, rendimento gravimétrico, microscopia eletrônica de varredura (MEV), espectroscopia por energia dispersiva (EDS) e poder calorífico superior (HHV). Os resultados revelaram que as melhores condições para a produção do biochar foram de 450 °C (temperatura de pirólise) e tempo de residência de 0,5h, com 37,21% de rendimento gravimétrico. Concluímos que o biochar produzido neste estudo é recomendado para aplicação no solo, mas não é adequado para fins energéticos devido ao seu elevado teor de cinzas (33,66%) e baixo HHV (18.907 J g-1).

Referências

ASTM D1102-84, Standard Test Method for Ash in Wood (2021). ASTM International, http://www.astm.org/Standards/D1102.

Barzan, R. R., Jordão, L. T., Firmano, R. F., Secato, T. R., Lima, F., Barzan, L. R., de Oliveira Jr., A., Castro, C., Crusciol, C. A. C., & Zucareli, C. (2021). Soil chemical attributes and nutritional status of soybean and maize intercropped with Urochloa under nitrogen rates. Agronomy Journal, 11, https://doi.org/10.1002/agj2.20744.

Benevides, W. S., Díaz, M. P., Guano, L. E., Pinheiro, A. R. A., Frota, L. O., Campos, W. O., & Pinto, P. W. C. (2016). Study of animal welfare through analysis and comparison of the presence of foot pad dermatitis in broilers raised in controlled environments in Brazil and Spain. Revista Brasileira de Higiene e Sanidade Animal, 10, 330-350, https://dx.doi.org/10.5935/1981-2965.20160028.

Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., & Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185, https://doi.org/10.1016/j.biombioe.2014.03.059.

Bridgwater, A. V., Czernik, S., & Piskorz, J. (2001). Chapter 80 - An overview of fast pyrolysis. In - Progress in thermochemical biomass conversion. Blackwell Science Ltd., 977-997, https://doi.org/10.1002/9780470694954.ch80.

Chan, K. Y., van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437-444, https://doi.org/10.1071/SR08036.

Chen, Y., Xu, Q., Sun, K., Han, L., Sun, H., Yang, Y., & Wang, Z. (2021). Effects of simulated diagenesis and mineral amendment on the structure, stability and imidacloprid sorption properties of biochars produced at varied temperatures. Chemosphere, 282, 121-003, https://doi.org/10.1016/j.chemosphere.2021.131003.

da Róz, A. L., Ricardo, J. F. C., Nakashima, G. T., & Santos, L. R. O., Yamaji, F. M. (2015). Maximization of fixed carbon content in biochar applied to carbon sequestration. Rev. Bras. Eng. Agríc. Ambient., 19, 810-814, https://doi.org/10.1590/1807-1929/agriambi.v19n8p810-814.

da Silva, C. J. & do Vale, A. T. (2018). Energy density model for forest species from cerrado. Rev. Caatinga, 31, 396-404. https://doi.org/10.1590/1983-21252018v31n216rc.

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - a critical review. Science of The Total Environment, 581-582, 601-611, https://doi.org/10.1016/j.scitotenv.2016.12.169.

de Carvalho, N. R., de Barros, J. L., da Silva, D. A., Nakashima, G. T., & Yamaji, F. M. (2020). Physical an chemical characterization of biomass used as solid fuel in a boiler. Química Nova, 10, 35-40, https://dx.doi.org/10.21577/0100-4042.20170663.

de Jong, I. C., Hindle, V. A., Butterworth, A., Engel, B., Ferrari, P., Gunnink, H., Perez Moya, T., Tuyttens, F. A. M., & van Reenen, C. G. (2016). Simplifying the Welfare Quality® assessment protocol for broiler chicken welfare. Animal, 10, 117-127, https://doi.org/10.1017/S1751731115001706.

Demirbas, A. (2006). Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis, 76, 285-289, https://doi.org/10.1016/j.jaap.2005.12.012.

Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M., & Sánches-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Journal Plos One, 12, 176-884, https://doi.org/10.1371/journal.pone.0176884.

Dornelas, K. C., Mascarenhas, H. N. M., Rodrigues, H. C. S., Nascimento, R. T., Brito, A. N. S., Furtado, D. A., & Nascimento, J. W. B. (2020). Withdrawn: Chicken bed: a review on reuse, treatment and influence on ambience. Poultry Science., https://doi.org/10.1016/j.psj.2020.09.067.

Faridullah, F., Yamamoto, S., Irshad, M., Uchiyama, T., & Toshimasa, H. (2008). Phosphorus fractionation in chicken and duck litter burned at different temperatures. Soil Science., 173, 287-295, http://dx.doi.org/10.1097/SS.0b013e31816d1e5b.

Garcês, A. P. T. J., Afonso, S. M. S., Chilundo, A., & Jairoce, C.T. S. (2017). Evaluation of different litter materials for broiler production in a hot and humid environment: 2. Productive performance and carcass characteristics. Tropical Animal Health Production, 49, 369-374, https://doi.org/10.1007/s11250-016-1202-7.

Grimes, J. L., Smith, J., & Williams, C. M. (2019). Some alternative litter materials used for growing broilers and turkeys. World's Poultry Science Journal, 58 515-526, https://doi.org/10.1079/WPS20020037.

Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: an urgent problem, The Crop Journal, 4, 83-91, https://doi.org/10.1016/j.cj.2015.11.003.

IBGE – Brazilian Institute of Geografy and Statistics, Livestock production statistics: Initial results (2021). IBGE, https://biblioteca.ibge.gov.br/visualizacao/periodicos/3087/epp_pr_2021_1tri.pdf.

Junna, S., He, F., Pan, Y., & Zhang, Z. (2016). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 67, 12-22, https://doi.org/10.1080/09064710.2016.1214745.

Katsuhara, M., Rhee, J. Y., Sugimoto, G., & Chung, G. C. (2011). Early response in water relations influenced by NaCl reflects tolerance or sensitivity of barley plants to salinity stress via aquaporins. Soil Science and Plant Nutrition, 57, 50-60, https://doi.org/10.1080/00380768.2010.541870.

Kelleher, B. P., Leahy, J. J., Henihan, A. M., O'Dwyer, T. F., Sutton, D., & Leahy, M. J. (2002). Advances in poultry litter disposal technology – a review, Bioresource Technology, 83, 27-36, https://doi.org/10.1016/s0960-8524(01)00133-x.

Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer?: A review. Int. J. Environ. Res. Public Health, 16, 3521, https://doi.org/10.3390/ijerph16193521.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43, 1812-1836, https://doi.org/10.1016/j.soilbio.2011.04.022.

Li, S., Wu, A., Deng, S., & Pan, W. (2008). Effect of co-combustion of chicken litter and coal on emissions in a laboratory-scale fluidized bed combustor. Fuel, Processing Technology., 89, 7-12, https://doi.org/10.1016/j.fuproc.2007.06.003.

Lin, Y., Munroe, P., Joseph, S., Ziolkowski, A., van Zwieten, L., Kimber, S., & Rust, J. (2013). Chemical and structural analysis of enhanced biochars: Thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere, 91, 35-40, https://doi.org/10.1016/j.chemosphere.2012.11.063.

Liu, T., Wu, F., Wang, W., Chen, J., Li, Z., Dong, X., Patton, J., Pei, Z., & Zheng, H. (2011). Effeccts of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 31, 402-413, https://doi.org/10.1093/treephys/tpr019.

Macklin, K. S., Hess, J. B., & Bilgili, S. F. (2008). In-house windrow composting and its effects on foodborne pathogens. Journal of Applied Poultry Ressearch, 17, 121-127, https://doi.org/10.3382/japr.2007-00051.

Masud, M. M., Baquy, M. A., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, 110-865, https://doi.org/10.1016/j.ecoenv.2020.110865.

Padilla, E. R. D., Santos, L. R. O., da Silva, D. A., Barros, J. L., Belini, G. B., Yamaji, F. M., Souza, T. M., & Campos, C. I. (2019). Eucalyptus bark charcoal: The influence of carbonization temperature in thermal behavior. Materials Research., 22, 1-5, https://doi.org/10.1590/1980-5373-MR-2019-0371.

Parente, T. L., Lazarini, E., Caioni, S., de Souza, L. G. M., Pivetta, R. S., & Bossolani, J. W. (2016). Potassium as topdressing in maize and the residual effects on soybean grown in succession, Rev. Agroambiente On-line, 10, 193-200, http://dx.doi.org/10.18227/1982-8470ragro.v10i3.3258.

Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstocks and pyrolysis temperature for environmental and agricultural application. Science of The Total Environment, 713, 136-433, https://doi.org/10.1016/j.scitotenv.2019.136433.

Pereira, M. E., Varanda, L. D., Nakashima, G. T., Hansted, A. L. S., da Silva, D. A., Tomeleri, J. O. P., Belini, G. B., & Yamaji, F. M. (2019). Characterization of the poultry litter biomass for production of biochar. Rev. Virtual Quím., 11, 1330-1343, https://doi.org/10.21577/1984-6835.20190092.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. [free e-book]. Santa Maria: UAB/NTE/UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Rogeri, D. A., Ernani, P. R., Mantovani, A., & Lourenço, K. S. (2016). Composition of poultry litter in southern Brazil, Rev. Bras. Ciênc. Solo., 40, 140-697, https://doi.org/10.1590/18069657rbcs20140697.

Shepherd, E. M., airchild, B. D., & Ritz, FC. W. (2017). Alternative bedding materials and litter depth impact litter moisture and footpad dermatitis. Journal of Applied Poultry Research., 26, 518-528, https://doi.org/10.3382/japr/pfx024.

Siefert, R. L., Scudlark, J. R., Potter, A. G., Simonsen, K. A., & Savidge, K. B. (2004). Characterization of atmospheric ammonia emissions from a commercial chicken house on the Delmarva Peninsula. Environ. Sci. Technol., 38, 2769-2778, https://doi.org/10.1021/es0345874.

Song, W. & Guo, M. (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis, 94, 138-145, https://doi.org/10.1016/j.jaap.2011.11.018.

Speratti, A. B., M. S. Johnson, H. M. Sousa, G. M., & Torres, E. G. Couto, (2017). Impact of different agricultural waste biochars on maize biomass and soil water content in a brazilian cerrado arenosol, Agronomy. 7 49, https://doi.org/10.3390/agronomy7030049.

Sweeten, J. M., Annamalai, K., Thien, B., & McDonald, L. A. (2003). Co-firing of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel, 82, 1167-1182, https://doi.org/10.1016/S0016-2361(03)00007-3.

Tańczuk, M., Junga, R., Werle, S., Chabiński, M., & Ziółkowskic, Ł. (2019). Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renewable Energy, 136, 1055-1063, https://doi.org/10.1016/j.renene.2017.05.074.

Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilization in low-carbon products: harnessing a major potential resource. Climated and Atmosperic Science, 2, 35, https://doi.org/10.1038/s41612-019-0093-5.

Usmani, Z., Sharma, M., Awasthi, A. K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V. K., Roberts, D., Newbold, J., & Gupta, V. K. (2021). Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresource Technology, 322, 124-548, https://doi.org/10.1016/j.biortech.2020.124548.

Vieites, F. M., Araújo, G. M., do Vale, P. A. C. B., Souza, C. S., Névoa, M. L., de Vargas Junior, J. G., Nunes, R. V., & Arruda, N. V. M., (2015). Minerals balance and performance of broilers at 21 days of age diet containing Solanum malacoxylon. Rev. Bras. Saúde Prod. Anim., 16, 535-543, https://doi.org/10.1590/S1519-99402015000300006.

Voss-Rech, D., Trevisol, I. M., Brentano, L., Silva, V. S., Rebelatto, R., Jaenisch, F. R. F., Okino, C. H., Mores, M. A. Z., Coldebella, A., Botton, S. A., & Vaz, C. S. L. (2017). Impact of treatments for recycled broiler litter on the viability and infectivity of microorganisms. Veterinary Microbiology., 203, 308-314, https://doi.org/10.1016/j.vetmic.2017.03.020.

Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: a state-of-art review. Progress in Energy and Combustion Science, 62, 33-86, https://doi.org/10.1016/j.pecs.2017.05.004.

Waqas, M., Abduriazaiza, A. S., Miandad, R., Rehan, M., Barakat, M., & Nizami, A. (2018). Development of biochar as fuel and catalyst in energy recovery technologies, Journal of Cleaner Production, 188, 477-488, https://doi.org/10.1016/j.jclepro.2018.04.017.

Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy, Biotechnology Reports., 28, e00570, https://doi.org/10.1016/j.btre.2020.e00570.

Yu, X. & Lu, S. (2020). Double effects of biochar in affecting the macropore system of paddy soils identified by high-resolution X-ray tomography. Science of the Total Environment, 720, 137-690, https://doi.org/10.1016/j.scitotenv.2020.137690.

Zdravkov, B., Cermák, J., Sefara, M., & Janku, J. (2017). Pore classification in the characterization of porus materials: a perspective. Open Chemistry, 5, 385-395, https://doi.org/10.2478/s11532-007-0017-9.

Downloads

Publicado

04/09/2021

Como Citar

PEREIRA, M. E.; VARANDA, L. D.; CARVALHO, N. R. de .; SETTE JR, C. R. .; PADUA, F. A. de; DE CONTI, A. C.; YAMAJI, F. M. Biochar produzido a partir de resíduos de cama de frango. Research, Society and Development, [S. l.], v. 10, n. 11, p. e351101119704, 2021. DOI: 10.33448/rsd-v10i11.19704. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19704. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas