Cambios leucocitarios en pacientes con COVID-19 observado en la extensión de sangre periférica

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19838

Palabras clave:

Coronavirus; Leucocitos; Hematología; Infección por SARS-CoV-2; Recuento de leucocitos.

Resumen

El objetivo del estudio fue verificar las principales alteraciones en el linaje leucocitario provocadas por la infección por SARS-CoV-2, virus de origen zoonótico responsable de la enfermedad conocida como COVID-19. El SARS-CoV-2 afecta a varios sistemas, incluido el sistema hematopoyético, que provoca cambios en los linajes de los leucocitos. Los pacientes infectados por el virus SARS-CoV-2 presentaron alteraciones numéricas y morfológicas en el linaje leucocitario, siendo más significativas la linfopenia y la neutrofilia. En cuanto a la morfología, se observaron varias anomalías. Con frecuencia se observaron linfocitos plasmocitoides y linfocitos reactivos similares a células de Downey. También estaban presentes monocitos displásicos y neutrófilos hipolobulados, clasificados como anomalía adquirida de Pseudo Pelger-Huet. Estas anomalías se correlacionaron con una mayor probabilidad de ingreso en la UCI y progresión a la muerte. Hubo una correspondencia entre el recuento normal de eosinófilos y la progresión positiva de la enfermedad, lo que sugiere que la regeneración de eosinófilos está relacionada con la recuperación de la enfermedad. Este conjunto de cambios no se ha observado en ninguna otra neumonía viral. El recuento diferencial de leucocitos es una prueba rápida y fácil de realizar, que puede ayudar al equipo médico a clasificar a los pacientes con afecciones graves o no graves, y brindar orientación sobre la evolución de la enfermedad.

Biografía del autor/a

Carolina Coradi, Universidade Paranaense

Estudiante del Curso de Biomedicina de la Universidade Paranaense - UNIPAR - Paraná - Brasil.

Suellen Laís Vicentino Vieira , Universidade Paranaense

Farmacéutico - bioquímica Doctorado en Biociencias y Fisiopatología - Universidad Estatal de Maringá - Paraná - Brasil Profesor de la Universidade Parananese - UNIPAR - Paraná - Brasil

Citas

Ahnach, M., Ousti, F., Nejjari, S., Houssaini, M. S., & Dini, N. (2021). Peripheral Blood Smear Findings in COVID-19. Turkish Journal Of Hematology. 37(4), p. 301-302. http://dx.doi.org/10.4274/tjh.galenos.2020.2020.0262.

Amgalan, A., & Othman, M. (2020). Hemostatic laboratory derangements in COVID-19 with a focus on platelet count. Platelets. 31(6), p. 740-745. http://dx.doi.org/10.1080/09537104.2020.1768523.

Anaurag, A., Jha, P. K., & Kumar, A. (2020). Differential white blood cell count in the COVID-19: a cross-sectional study of 148 patients. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 14(6), p. 2099-2102. http://dx.doi.org/10.1016/j.dsx.2020.10.029.

Asghar, M., Hussain, N., Shoaib, H., Kim, M., & Lynch, T. (2020). Hematological characteristics of patients in coronavirus 19 infection: a systematic review and meta-analysis. Journal Of Community Hospital Internal Medicine Perspectives. 10(6), p. 508-513, 29. http://dx.doi.org/10.1080/20009666.2020.1808360.

Asghar, M. S., Khan, N. A., Kazmi, S. J. H., Ahmed, A., Hassan, M., Jawed, R., Akram, M., Rasheed, U., Memon, G. M., Ahmed, M. U., Tahniyat, U., & Tirmizi, S. B. (2020). Hematological parameters predicting severity and mortality in COVID-19 patients of Pakistan: a retrospective comparative analysis. Journal Of Community Hospital Internal Medicine Perspectives. 10(6), p. 514-520. http://dx.doi.org/10.1080/20009666.2020.1816276.

Berber, I., Casagar, O., Sarici, A., Berber, N. K., Aydogdu, I., Ulutas, O., Yildirim, A., Bag, H. G. G., & Delen, L. A. (2020). Simple peripheral blood smear findings of COVID-19 patients provide information about the severity of the disease and the duration of hospital stay. Mediterranean Journal Of Hematology And Infectious Diseases. 13(1), p. 1-10. http://dx.doi.org/10.4084/mjhid.2021.009.

Blomme, S., Smets, L., Van Ranst, M., Boeckx, N., & Van Laer, C. (2020). The influence of COVID-19 on routine hematological parameters of hospitalized patients. Acta Clinica Belgica. p. 1-6. http://dx.doi.org/10.1080/17843286.2020.1814649.

Borges, L., Pithon-Curi, T. C., Curi, R., & Hatanaka, E. (2020). COVID-19 and Neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps. Mediators Of Inflammation. p. 1-7. http://dx.doi.org/10.1155/2020/8829674.

Cavalcante-Silva, L. H. A., Carvalho, D. C. M., Lima, E. A., Galvão, J. G. F. M., Silva, J. S. F., Sales-Neto, J. M., & Rodrigues-Mascarenhas, S. (2021). Neutrophils and COVID-19: the road so far. International Immunopharmacology. 90, p. 1-7. http://dx.doi.org/10.1016/j.intimp.2020.107233.

Celkan, T. T. (2020). Hemogram bize neler söyler? Türk Pediatri Arşivi. 55(2), p. 103-116. http://dx.doi.org/10.14744/turkpediatriars.2019.76301.

Chan, S. S. W., Christopher, D., Tan, G. B., Chong, V. C. L., Fan, B. E., Lin, C. Y., & Ong, K. H. (2020). Peripheral lymphocyte subset alterations in COVID‐19 patients. International Journal Of Laboratory Hematology. 42(5), p. 199-203. http://dx.doi.org/10.1111/ijlh.13276.

Chen, J., Pan, Y., Li, G., Xu, W., Zhang, L., Yuan, S., Xia, Y., Lu, P., & Zhang, J. (2020). Distinguishing between COVID‐19 and influenza during the early stages by measurement of peripheral blood parameters. Journal Of Medical Virology. 93(2), p. 1029-1037. http://dx.doi.org/10.1002/jmv.26384.

Choi, M., Aiello, E. A., Ennis, I. L., & Villa-Abrille, M. C. (2020). El SRAA y el SARS-CoV-2: el acertijo a resolver. Hipertensión y Riesgo Vascular. 37(4), p. 169-175. http://dx.doi.org/10.1016/j.hipert.2020.05.005.

Chong, V. C. L., Lim, K. G. E., Fan, B. E., Chan, A. S. W., Ong, K. H., & Kuperan P. (2020). Reactive lymphocytes in patients with COVID‐19. British Journal Of Haematology. 189(5), p. 844-844. http://dx.doi.org/10.1111/bjh.16690.

Christensen, B., Favaloro, E. J., Lippi, G., & Van Cott, E. M. (2020). Hematology Laboratory Abnormalities in Patients with Coronavirus Disease 2019 (COVID-19). Seminars In Thrombosis And Hemostasis. 46(07), p. 845-849. http://dx.doi.org/10.1055/s-0040-1715458.

Djangang, N. N., Peluso, L., Talamonti, M., Izzi, A., Gevenois, P. A., Garufi, A., Goffard, J-C., Henrard, S., Severgnini, P., Vincent, J-L., Creteur, J., & Taccone, F. S. (2020). Eosinopenia in COVID-19 Patients: a retrospective analysis. Microorganisms. 8(12), p. 1-12. http://dx.doi.org/10.3390/microorganisms8121929.

Du, Y., Tu, L., Zhu, P., Mu, M., Wang, R., Yang, P., Wang, X., Hu, C., Ping, R., Hu, P., Li, T., Cao, F., Chang, C., Hu, Q., Jin, Y., & Xu, G. (2020). Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study. American Journal Of Respiratory And Critical Care Medicine. 201(11), p. 1372-1379. http://dx.doi.org/10.1164/rccm.202003-0543oc.

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa [recurso eletrônico]. 3 edição. Porto Alegre: Artes médicas. https://viewer.bibliotecaa.binpar.com/.

Falcão, R. P., & Calado, R. T. (2001). Heterogeneidade das células do sangue: órgãos hematopoéticos e linfopoiéticos. In: Hematologia; Fundamentos e práticas. São Paulo: Atheneu, 2001. p. 1043-1053. https://repositorio.usp.br/item/001235332.

Foldes, D., Hinton, R., Arami, S., & Bain, B. (2020). Plasmacytoid lymphocytes in SARS‐CoV ‐2 infection (Covid‐19). American Journal Of Hematology. 95(7), p. 861-862, 28 abr. 2020. http://dx.doi.org/10.1002/ajh.25834.

Gérard, D., Henry, S., & Thomas, B. (2020). SARS‐CoV‐2: a new aetiology for atypical lymphocytes. British Journal Of Haematology. 189(5), p. 845-845. http://dx.doi.org/10.1111/bjh.16730.

Helal, M. A., Shouman, S., Abdelwaly, A., Elmehrath, A. O., Essawy, M., Sayed, S. M., Saleh, A. H., & El-Badri, N. (2020). Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 inOVID-19 associated-lymphopenia. Journal Of Biomolecular Structure And Dynamics. p. 1-11. http://dx.doi.org/10.1080/07391102.2020.1822208.

Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. (2020). Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from sars and mers, and potential therapeutic interventions. Life Sciences. 257, p. 1-16. http://dx.doi.org/10.1016/j.lfs.2020.118102.

Jamal, S. M., Salib, C., Stock, A., & Uriarte-Haparnas, N. I. (2020). Atypical lymphocyte morphology in SARS-CoV-2 infection. Pathology - Research And Practice. 216(9), p. 1-2. http://dx.doi.org/10.1016/j.prp.2020.153063.

Jesenak, M., Banovcin, P., & Diamant, Z. (2020). COVID‐19, chronic inflammatory respiratory diseases and eosinophils—Observations from reported clinical case series. Allergy. 75(7), p. 1819-1822. http://dx.doi.org/10.1111/all.14353.

Kaur, G., Sandeep, FNU., Olayinka, O., & Gupta, G. (2021). Morphologic Changes in Circulating Blood Cells of COVID-19 Patients. Cureus. 13(2), p. 1-8, 18 fev. 2021. http://dx.doi.org/10.7759/cureus.13416.

Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanox, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H. G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 588(7838), p. 498-502. http://dx.doi.org/10.1038/s41586-020-2665-2.

Khalil, O. A. K., & Khalil, S. S. (2020). SARS-CoV-2: taxonomia, origem e constituição. Revista de Medicina. 99(5), p. 473-479. http://dx.doi.org/10.11606/issn.1679-9836.v99i5p473-479.

Khartabil, T. A., Russcher, H., Ven, A., & Rijke, Y. B. (2020). A summary of the diagnostic and prognostic value of hemocytometry markers in COVID-19 patients. Critical Reviews In Clinical Laboratory Sciences. 57(6), p. 415-431. http://dx.doi.org/10.1080/10408363.2020.1774736.

Lee, C-T., Teo, W. Z. Y. (2020). Peripheral Blood Smear Demonstration of Lymphocyte Changes in Severe COVID-19. The American Journal Of Tropical Medicine And Hygiene. 103(4), p. 1350-1351. http://dx.doi.org/10.4269/ajtmh.20-0721.

Li, Q., Xie, Y., Cui, Z., Tang, S., Yuan, B., Huang, H., Hu, Y., Wang, Y., Zhou, M., & Shi, C. (2020). Analysis of Peripheral Blood IL-6 and Leukocyte Characteristics in 364 COVID-19 Patients of Wuhan. Frontiers In Immunology. 11, p. 1-7. http://dx.doi.org/10.3389/fimmu.2020.559716.

Liao, D., Zhou, F., Lou, L., Xu, M., Wang, H., Xia, J., Gao, Y., Cai, L., Wang, Z., Yin, P., Wang, Y., Tang, L., Deng, J., Mei, H., & Hu, Y. (2020). Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. The Lancet Haematology. 7(9), p. 671-678. http://dx.doi.org/10.1016/s2352-3026(20)30217-9.

Liu, F., Xu, A., Zhang, Y., Xuan, W., Yan, T., Pan, K., Yu, W., & Zhang, J. (2020). Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression. International Journal Of Infectious Diseases. 95, p. 183-191. http://dx.doi.org/10.1016/j.ijid.2020.03.013.

Liu, X., Zhang, R., & He, G. (2020). Hematological findings in coronavirus disease 2019: indications of progression of disease. Annals Of Hematology. 99 (7), p. 1421-1428. http://dx.doi.org/10.1007/s00277-020-04103-5.

Lu, G., & Wang, J. (2020). Dynamic changes in routine blood parameters of a severe COVID-19 case. Clinica Chimica Acta, 508, p. 98-102. http://dx.doi.org/10.1016/j.cca.2020.04.034.

Lüke, F., Orsó, E., Kirsten, J., Poeck, H., Grube, M., Wolff, D., Burkhardt, R., Lunz, D., Lubnow, M., Schmidt, B., Hitzenbichler, F., Hanses, F., Salzberger, B., Evert, M., Herr, W., Brochhausen, C., Pukrop, T., Reichle, A., Heudobler, D. (2020). Coronavirus disease 2019 induces multi‐lineage, morphologic changes in peripheral blood cells. Ejhaem, 1(1), p. 376-383. http://dx.doi.org/10.1002/jha2.44.

Mao, J., Dai, R., Du, R-C., Zhu, Y., Shui, L-P., & Luo, X-H. (2021). Hematologic changes predict clinical outcome in recovered patients with COVID-19. Annals Of Hematology. 100(3), p. 675-689. http://dx.doi.org/10.1007/s00277-021-04426-x

Matic, S., Popovic, S., Djurdjevic, P., todorovic, D., Djordjevic, N., Mijailovic, Z., Sazdanovic, P., Milovanovic, D., Zecevic, D. R., Petrovic, M., Sazdanovic, M., Zornic, N., Vukiceic, V., Petrovic, I., Matic, S., Vukicevik, M. K., & Baskic, D. (2020). SARS-CoV-2 infection induces mixed M1/M2 phenotype in circulating monocytes and alterations in both dendritic cell and monocyte subsets. Plos One. 15(12), p. 1-17. http://dx.doi.org/10.1371/journal.pone.0241097.

Meidaninikjeh, S., Sabouni, N., Marzouni, H. Z., Bengar, S., Khalili, A., & Jafari, R. (2021). Monocytes and macrophages in COVID-19: friends and foes. Life Sciences. 269, p. 1-10. http://dx.doi.org/10.1016/j.lfs.2020.119010.

Middleton, E. A., He, X-Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., Mostyka, M., Baxter-Stoltzfus, A., Borczuk, A. C., Loda, M., Cody, M. J., Manne, B. K., Portier, I., Harris, E. S., Petrey, A. C., Beswick, E. J., Caulin, A. F., Iovino, A., Abegglen, L. M., …, Yost, C. C. (2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 136(10), p. 1169-1179. http://dx.doi.org/10.1182/blood.2020007008.

Mina, A., Van Besien, K., & Platanias, L. C. (2020). Hematological manifestations of COVID-19. Leukemia & Lymphoma. 61(12), p. 2790-2798. http://dx.doi.org/10.1080/10428194.2020.1788017.

Mitra, A., Dwyre, D. M., Schivo, M., Thompson III, G. R., Cohen, S. H., Ku, N., & Graff, J. P. (2020). Leukoerythroblastic reaction in a patient with COVID ‐19 infection. American Journal Of Hematology. 95(8), p. 999-1000. http://dx.doi.org/10.1002/ajh.25793.

Naoum, F. A., Ruiz, A. L. Z., Martin, F. H. O., Brito, T. H. G., Hassem, V., & Oliveira, M. G. (2020). Diagnostic and prognostic utility of WBC counts and cell population data in patients with COVID‐19. International Journal Of Laboratory Hematology. p. 1-5. http://dx.doi.org/10.1111/ijlh.13395.

National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chinese Medical Journal. 133(9), p. 1087-1095, 2020. https://doi.org/10.1097/CM9.0000000000000819.

Nazarullah, A., Liang, C., Villareal, A., Higgins, R. A., & Mais, D. D. (2020). Peripheral Blood Examination Findings in SARS-CoV-2 Infection. American Journal Of Clinical Pathology. 154(3), p. 319-329. http://dx.doi.org/10.1093/ajcp/aqaa108.

Nikitina, E., Larionova, I., Choinzonov, E., & Kzhyshkowska, J. (2018). Monocytes and Macrophages as Viral Targets and Reservoirs. International Journal Of Molecular Sciences. 19(9), p. 1-25. http://dx.doi.org/10.3390/ijms19092821.

OPAS - Organização Pan-Americana da Saúde. OMS afirma que COVID-19 é agora caracterizada como pandemia. 2020. Disponível em: https://www.paho.org/pt/news/11-3-2020-who-characterizes-covid-19-pandemic. Acesso em: 13 abr. 2021.

Parackova, Z., Zentsova, I., Bloomfield, M., Vrabcova, P., Smetanova, J., Klocperk, A., Meseznikov, G., Mendez, L. F. C., Vymazal, T., & Sediva, A. (2020). Disharmonic Inflammatory Signatures in COVID-19: augmented neutrophils but impaired monocytes and dendritic cells responsiveness. Cells. 9(10), p. 1-17. http://dx.doi.org/10.3390/cells9102206.

Pirsalehi, A., Salari, S., Baghestani, A., Sanadgol, G., Shirini, D., Baerz, M. M., Abdi, S., Akbari, M. E., & Bashash, D. (2021). Differential alteration trend of white blood cells (WBCs) and monocytes count in severe and non-severe COVID-19 patients within a 7-day follow-up. Iranian Journal Of Microbiology. 13(1), p. 8-16. http://dx.doi.org/10.18502/ijm.v13i1.5486.

Pozdnyakova, O., Cornnell, N. T., Battinelli, E. M., Connors, J. M., Fell, G., & Kim, A. S. (2020). Clinical Significance of CBC and WBC Morphology in the Diagnosis and Clinical Course of COVID-19 Infection. American Journal Of Clinical Pathology. 155(3), p. 364-375. http://dx.doi.org/10.1093/ajcp/aqaa231.

Rodrigo-Muñoz, J. M., Sastre, B., Cañas, J. A., Gil-Martínez, M., Redondo, N., & del Pozo, V. (2021). Eosinophil Response Against Classical and Emerging Respiratory Viruses: covid-19. Journal Of Investigational Allergology And Clinical Immunology. 31(2), p. 94-107. http://dx.doi.org/10.18176/jiaci.0624.

Rodriguez, L., Pekkarinen, P. T., Lakshmikanth, T., Tan, Z., Consiglio, C. R., Pou, C., Chen, Y., Mugabo, C. H., Nguyen, N. A., Nowlan, K., Strandin, T., Levanov, L., Mikes, J., Wang, J., Kantele, A., Hepojoki, J., Vapalahti, O., Heinonen, J., Kekäläinen, E., & Brodin, P. (2020). Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Reports Medicine. 1(5), p. 1-12. http://dx.doi.org/10.1016/j.xcrm.2020.100078.

Ropa, J., Cooper, S., Capitano, M. L., Hof, W. V., & Broxmeyer, H. E. (2020). Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to SARS-CoV-2 Spike Protein. Stem Cell Reviews And Reports. 17(1), p. 253-265. http://dx.doi.org/10.1007/s12015-020-10056-z.

Rosenberg, H. F., & Foster, P. S. (2021). Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars In Immunopathology. p. 1-10. http://dx.doi.org/10.1007/s00281-021-00850-3.

Sadigh, S., Massoth, L. R., Christensen, B. B., Stefely, J. A., Keefe, J., & Sohani, A. R. (2020). Peripheral blood morphologic findings in patients with COVID‐19. International Journal Of Laboratory Hematology. 42(6), p. 248-25. http://dx.doi.org/10.1111/ijlh.13300.

Salib, C., & Teruya-Feldstein, J. (2020). Hypersegmented granulocytes and COVID-19 infection. Blood. 135(24), p. 2196-2196. http://dx.doi.org/10.1182/blood.2020006483.

Schapkaitz, E., Jager, T., Levy, B. (2020). The characteristic peripheral blood morphological features of hospitalized patients infected with COVID‐19. International Journal Of Laboratory Hematology. 43(3), p. 130-134. http://dx.doi.org/10.1111/ijlh.13417.

Shahri, M. K., Niazkar, H. R., & Rad, F. (2021). COVID‐19 and hematology findings based on the current evidences: a puzzle with many missing pieces. International Journal of Laboratory Hematology. 43(2), p. 160-168. http://dx.doi.org/10.1111/ijlh.13412.

Silva, P. H., Alves, H. B., Comar, S. R., Henneberg, R., Merlin, J. C., & Stinghen, S. T. (2016). Hematologia laboratorial: teoria e procedimentos. Porto Alegre: Artmed, 2016. 434 p. Disponível em: https://viewer.bibliotecaa.binpar.com/. Acesso em: 07 jul. 2021.

Singh, A., Sood, N., Narang, V., & Goyal, A. (2020). Morphology of COVID-19–affected cells in peripheral blood film. Bmj Case Reports. 13(5), p. 1-2. http://dx.doi.org/10.1136/bcr-2020-236117.

Siracusa, M. C., Kim, B. S., Spergel, J. M., & Artis, D. (2013). Basophils and allergic inflammation. Journal Of Allergy And Clinical Immunology. 132(4), p. 789-801. http://dx.doi.org/10.1016/j.jaci.2013.07.046.

Sun, D-W., Zhang, D., Tian, R-H., Li, Y., Wang, Y-S., Cao, J., Tang, Y., Zhang, N., Zan, T., Gao, L., Huang, Y-Z., Cui, C-L., Wang, D-X., Zheng, Y., & Lv, G-Y. (2020). The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: a sentinel?. Clinica Chimica Acta. 508, p. 122-129. http://dx.doi.org/10.1016/j.cca.2020.05.027.

Sun, S., Cai, X., Wang, H., He, G., Lin, Y., Lu, B., Chen, C., Pan, Y., & Hu, X. (2020). Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clinica Chimica Acta. 507, p. 174-180. http://dx.doi.org/10.1016/j.cca.2020.04.024.

Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y-Q., Wang, Q., & Miao, H. (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduction And Targeted Therapy. (33). http://dx.doi.org/10.1038/s41392-020-0148-4.

Tan, Y., Zhou, J., Zhou, Q., Hu, L., & Long, Y. (2020). Role of eosinophils in the diagnosis and prognostic evaluation of COVID‐19. Journal Of Medical Virology. 93(2), p. 1105-1110. http://dx.doi.org/10.1002/jmv.26506.

Tanni, F., Akker, E., Zaman, M. M., Figueroa, N., Tharian, B., & Hupart, K. H. (2020). Eosinopenia and COVID-19. Journal Of Osteopathic Medicine. (8), p. 504-508. http://dx.doi.org/10.7556/jaoa.2020.091.

Walls, A. C., Park, Y-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. (2), p. 281-292. http://dx.doi.org/10.1016/j.cell.2020.02.058.

Wang, M-Y., Zhao, R., Gao, L-J., Gao, X-F., Wang, D-P., & Cao, J-M. (2020). SARS-CoV-2: structure, biology, and structure-based therapeutics development. Frontiers In Cellular And Infection Microbiology. 10(1), p. 1-17. http://dx.doi.org/10.3389/fcimb.2020.587269.

Weinberg, S. E., Behdad, A., Ji, P. (2020). Atypical lymphocytes in peripheral blood of patients with COVID‐19. British Journal Of Haematology. 190(1), p. 36-39. http://dx.doi.org/10.1111/bjh.16848.

Wu, Y., Huang, X., Sun, J., Xie, T., Lei, Y., Muhammad, J., Li, X., Zeng, X., Zhou, F., Qin, H., Shao, L., & Zhang, Q. (2020). Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19. Msphere. 5(4), p. 1-11. http://dx.doi.org/10.1128/msphere.00362-20.

Xie, G., Ding, F., Han, L., Yin, D., Lu, H., & Zhang, M. (2020). The role of peripheral blood eosinophil counts in COVID‐19 patients. Allergy. 76(2), p. 471-482. http://dx.doi.org/10.1111/all.14465.

Zhang, D., Guo, R., Lei, L., Liu, H., Wang, Y., Wang, Y., Qian, H., Dai, T., Zhang, T., Lai, Y., Wang, J., Liu, Z., Chen, T., He, A., O’Dwyer, M., & Hu, J. (2020). Frontline Science: covid-19 infection induces readily detectable morphologic and inflammation related phenotypic changes in peripheral blood monocytes. Journal Of Leukocyte Biology. 109(1), p. 13-22. http://dx.doi.org/10.1002/jlb.4hi0720-470r.

Zhang, H., Cao, X., Kong, M., Mao, X., Huang, L., He, P., Pan, S., Li, J., & Lu, Z. (2020). Clinical and hematological characteristics of 88 patients with COVID‐19. International Journal Of Laboratory Hematology. 42 (6), p. 780-787. http://dx.doi.org/10.1111/ijlh.13291.

Zingaropoli, M. A., Nijhawan, P., Carraro, A., Pasculli, P., Zuccalà, P., Perri, V., Marocco, R., Kertusha, B., Siccardi, G., Del Borgo, C., Curtolo, A., Ajassa, C., Iannetta, M., Ciardi, M. R., Mastroianni, C. M., & Lichtner, M. (2021). Increased sCD163 and sCD14 Plasmatic Levels and Depletion of Peripheral Blood Pro-Inflammatory Monocytes, Myeloid and Plasmacytoid Dendritic Cells in Patients With Severe COVID-19 Pneumonia. Frontiers In Immunology. 12, p. 1-12. http://dx.doi.org/10.3389/fimmu.2021.627548.

Publicado

05/09/2021

Cómo citar

CORADI, C.; VIEIRA , S. L. V. . Cambios leucocitarios en pacientes con COVID-19 observado en la extensión de sangre periférica . Research, Society and Development, [S. l.], v. 10, n. 11, p. e400101119838, 2021. DOI: 10.33448/rsd-v10i11.19838. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19838. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud