Electrical parameters of transcranial direct current stimulation that effectively alter cerebral blood flow in experimental animals: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.30794

Keywords:

Transcranial direct current stimulation; Cerebrovascular circulation; Blood flow cerebral; Rats.

Abstract

Objective: To identify the electrical parameters of transcranial direct current stimulation (tDCS) that effectively alter cerebral blood flow in rats. Methodology: Six eletronic databases were searched with no time or language restrictions to identify experimental studies with rats using tDCS with anodal and/or cathodal stimulation with or without a comparison group. Internal validity was assessed via the following criteria: housing, lighting, temperature, water/food, groups randomization and ethical aspects. The ‘Laboratory Systematic Review Center for Laboratory animal Experimentation’ (SYRCLE) tool was used to assess risk of bias. The tDCS electrical parameters and cerebral blood flow were considered as primary outcomes and cerebral histological alterations as the secondary outcome. Results: Four articles were included. All four studies were considered to present a high level of scientific bias. The electrical tDCS parameters implemented were heterogeneous but overall, tDCS with anodal stimulation promoted an increase in cerebral blood flow while the cathodal stimulation decreased it. Cerebral histological alterations were assessed in two studies and tissue necrosis was reported in only one animal per study. Conclusion: The identification of tDCS electrical parameters that effectively alter cerebral blood flow in rats was not possible due to the heterogeneity of tDCS protocols being implemented in the literature. Considering the high risk of scientific bias in the included studies, the current available evidence regarding tDCS efficacy is insufficient and inconclusive.

References

Bhattacharya, A., Mrudula, K., Sreepada, S. S., Sathyaprabha, T. N., Pal, P. K., Chen, R., & Udupa, K. (2021). An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 1–14. Retrieved from https://www.cambridge.org/core/product/identifier/S031716712100158X/type/journal_article

Bornheim, S., Croisier, J.-L., Maquet, P., & Kaux, J.-F. (2020). Transcranial direct current stimulation associated with physical-therapy in acute stroke patients - A randomized, triple blind, sham-controlled study. Brain Stimulation, 13(2), 329–336. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1935861X19304280

Corrêa, M. J. U., Perazzio, S. F., Andrade, L. E. C., & Kayser, C. (2010). Laser doppler imaging para quantificação do fluxo sanguíneo de polpa digital em condições basais e após estímulo frio em pacientes com esclerose sistêmica. Revista Brasileira de Reumatologia, 50(2), 128–40.

Cyr, M. P., Pinard, A., Dubois, O., & Morin, M. (2019). Reliability of vulvar blood perfusion in women with provoked vestibulodynia using laser Doppler perfusion imaging and laser speckle imaging. Microvascular Research, 121, 1–6.

Deguchi, B. G. F., Tamioso, P. R., & Molento, C. F. M. (2016). Percepção de equipes laboratoriais quanto a questões de bem-estar animal. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 68(1), 48–56.

Ding, H., Hu, G. L., Zheng, X. Y., Chen, Q., Threapleton, D. E., & Zhou, Z. H. (2015). The method quality of cross-over studies involved in Cochrane Systematic Reviews. PLoS ONE, 10(4), 1–8.

Dutta, A. (2015). Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS. Frontiers in Systems Neuroscience, 9, 1–7.

Dutta, A., Jacob, A., Chowdhury, S. R., Das, A., & Nitsche, M. A. (2015). EEG-NIRS Based Assessment of Neurovascular Coupling During Anodal Transcranial Direct Current Stimulation - a Stroke Case Series. Journal of Medical Systems, 39(4).

Garnett, E. O., Malyutina, S., Datta, A., & den Ouden, D.-B. (2015). On the use of the terms anodal and cathodal in high-definition transcranial direct current stimulation: A technical note. Neuromodulation: Technology at the Neural Interface, 18(8), 705–713.

Ghanavati, E., Salehinejad, M. A., De Melo, L., Nitsche, M. A., & Kuo, M.-F. (2022). NMDA receptor-related mechanisms of dopaminergic modulation of tDCS-induced neuroplasticity. Cerebral cortex (New York, N.Y. : 1991). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/35165699

Ghasemian-Shirvan, E., Mosayebi-Samani, M., Farnad, L., Kuo, M.-F., Meesen, R. L. J., & Nitsche, M. A. (2022). Age-dependent non-linear neuroplastic effects of cathodal tDCS in the elderly population: a titration study. Brain Stimulation, 15(2), 296–305. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1935861X22000122

Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., Launer, L. J., et al. (2011). Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(9), 2672–2713.

Gozalov, A., Jansen-Olesen, I., Klaerke, D., & Olesen, J. (2008). Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat. Headache, 48(8), 1202–1213.

Han, C. H., Song, H., Kang, Y. G., Kim, B. M., & Im, C. H. (2014). Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study. Biomedical optics express, 5(6), 1812–21.

Hooijmans, C. R., Leenaars, M., & Ritskes-Hoitinga, M. (2010). A Gold Standard Publication Checklist to Improve the Quality of Animal Studies, to Fully Integrate the Three Rs, and to Make Systematic Reviews More Feasible. Alternatives to Laboratory Animals, 38(2), 167–182.

Hooijmans, C. R., Rovers, M. M., Vries, R. B. M. De, Leenaars, M., Ritskes-hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14(1), 1–9. BMC Medical Research Methodology.

Hu, S., Zheng, T., Dong, Y., Du, J., & Liu, L. (2018). Effect of Anodal Direct-Current Stimulation on Cortical Hemodynamic Responses With Laser-Speckle Contrast Imaging. Frontiers in Neuroscience, 12(July), 1–6.

Jackson, M. P., Truong, D., Brownlow, M. L., Wagner, J. A., McKinley, R. A., Bikson, M., & Jankord, R. (2017). Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats. Brain, Behavior, and Immunity, 64, 152–161.

Kim, S. J., Kim, B. K., Ko, Y. J., Bang, M. S., Kim, M. H., & Han, T. R. (2010). Functional and histologic changes after repeated transcranial direct current stimulation in rat stroke model. Journal of Korean Medical Science, 25(10), 1499–1505.

Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., Rothwell, J. C., et al. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience, 22(2), 495–504.

Leal, C., Bezerra, A., & Lemos, A. (2012). A efetividade do laser de HeNe 632,8 nm no reestabelecimento da integridade dos tecidos cutâneos em animais experimentais: revisão sistemática. Fisioterapia e Pesquisa, 19(3), 290–296.

Li, X., & Morton, S. M. (2020). Effects of chronic antidepressant use on neurophysiological responses to tDCS post-stroke. Neuroscience Letters, 717, 134723. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0304394019308262

Liebetanz, D., Koch, R., Mayenfels, S., König, F., Paulus, W., & Nitsche, M. A. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 120(6), 1161–1167.

Lima, A., & Bakker, J. (2011). Espectroscopia no infravermelho próximo para a monitorização da perfusão tecidual. Revista Brasileira de Terapia Intensiva, 23(3), 341–351.

Mielke, D., Wrede, A., Schulz-Schaeffer, W., Taghizadeh-Waghefi, A., Nitsche, M. a, Rohde, V., & Liebetanz, D. (2013). Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurological Research, 35(10), 1029–37.

Moisset, X., Pereira, B., Ciampi de Andrade, D., Fontaine, D., Lantéri-Minet, M., & Mawet, J. (2020). Neuromodulation techniques for acute and preventive migraine treatment: a systematic review and meta-analysis of randomized controlled trials. The Journal of Headache and Pain, 21(1), 142. Retrieved from https://thejournalofheadacheandpain.biomedcentral.com/articles/10.1186/s10194-020-01204-4

Montori, V. M., & Guyatt, G. H. (2001). Intention-to-treat principle. CMAJ, 165(10), 1339–1341.

Nitsche, M A, & Paulus, W. (2000a). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527.3, 633–9.

Nitsche, M A, & Paulus, W. (2000b). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639. Retrieved from https://onlinelibrary.wiley.com/doi/10.1111/j.1469-7793.2000.t01-1-00633.x

Nitsche, Michael A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., et al. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–23.

Nitsche, Michael A, & Paulus, W. (2011). Transcranial direct current stimulation--update 2011. Restorative neurology and neuroscience, 29(6), 463–92.

Orrù, G., Conversano, C., Hitchcott, P. K., & Gemignani, A. (2020). Motor stroke recovery after tDCS: a systematic review. Reviews in the Neurosciences, 31(2), 201–218. Retrieved from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0047/html

Pithon, M. M. (2013). Importance of the control group in scientific research. Dental Press Journal of Orthodontics, 18(6), 13–14.

Pulgar, V. M. (2015). Direct electric stimulation to increase cerebrovascular function. Frontiers in Systems Neuroscience, 9, 1–5.

Shin, D. W., Fan, J., Luu, E., Khalid, W., Xia, Y., Khadka, N., Bikson, M., et al. (2020). In Vivo Modulation of the Blood–Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Annals of Biomedical Engineering, 48(4), 1256–1270.

Shin, D. W., Khadka, N., Fan, J., Bikson, M., & Fu, B. M. (2016). Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo. Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging, 9788, 97881X.

Stagg, C. J., & Nitsche, M. A. (2011). Physiological Basis of Transcranial Direct Current Stimulation. The Neuroscientist, 17(1), 37–53.

Takano, Y., Yokawa, T., Masuda, A., Niimi, J., Tanaka, S., & Hironaka, N. (2010). Development of a rat model for transcranial direct current stimulation (tDCS): effectiveness measurement using fMRI. Neuroscience Research, 68, e182.

Takano, Y., Yokawa, T., Masuda, A., Niimi, J., Tanaka, S., & Hironaka, N. (2011). A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neuroscience Letters, 491(1), 40–43.

Urban, A., Mace, E., Brunner, C., Heidmann, M., Rossier, J., & Montaldo, G. (2014). Chronic assessment of cerebral hemodynamics during rat forepaw electrical stimulation using functional ultrasound imaging. NeuroImage, 101, 138–149.

Visocchi, M. (2008). Neuromodulation of cerebral blood flow by spinal cord electrical stimulation: the role of the Italian school and state of art. Journal of Neurosurgical Sciences, 52(2), 41–7.

Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., Kozák, G., et al. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1).

Wachter, D., Wrede, A., Schulz-Schaeffer, W., Taghizadeh-Waghefi, A., Nitsche, M. A., Kutschenko, A., Rohde, V., et al. (2011). Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Experimental Neurology, 227(2), 322–7.

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. International Federation of Clinical Neurophysiology.

Yu, K. P., Yoon, Y. S., Lee, J. G., Oh, J. S., Lee, J. S., Seog, T., & Lee, H. Y. (2018). Effects of electric cortical stimulation (ECS) and transcranial direct current stimulation (tDCS) on rats with a traumatic brain injury. Annals of Rehabilitation Medicine, 42(4), 502–513.

Zhang, K., Guo, L., Zhang, J., An, G., Zhou, Y., Lin, J., Xing, J., et al. (2019). A safety study of 500 μa cathodal transcranial direct current stimulation in rat. BMC Neuroscience, 20(1).

Zhang, K. Y., Rui, G., Zhang, J. P., Guo, L., An, G. Z., Lin, J. J., He, W., et al. (2020). Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neuroscience, 21(1).

Zheng, X., Alsop, D. C. D., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage, 58(1), 617–632.

Downloads

Published

17/06/2022

How to Cite

ALMEIDA, C. C. S. de; VALENÇA, M. M.; ROSAS, . E. P. .; MONTENEGRO, E. J. N. .; ALVES, L. I. do N. .; WANDERLEY, D.; TENÓRIO, . A. da S. .; OLIVEIRA, D. A. de . Electrical parameters of transcranial direct current stimulation that effectively alter cerebral blood flow in experimental animals: a systematic review . Research, Society and Development, [S. l.], v. 11, n. 8, p. e22811830794, 2022. DOI: 10.33448/rsd-v11i8.30794. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30794. Acesso em: 26 nov. 2024.

Issue

Section

Health Sciences