Parâmetros elétricos da estimulação transcraniana por corrente contínua efetivos para alterações do fluxo sanguíneo cerebral de animais experimentais: uma revisão sistemática

Autores

DOI:

https://doi.org/10.33448/rsd-v11i8.30794

Palavras-chave:

Estimulação transcraniana por corrente contínua; Circulação cerebrovascular; Fluxo sanguíneo cerebral; Ratos.

Resumo

Objetivo: Identificar os parâmetros da estimulação transcraniana por corrente contínua (ETCC) mais eficazes para promover alterações sobre o fluxo sanguíneo cerebral de ratos. Metodologia: Seis bancos de dados eletrônicos foram pesquisados sem restrição linguística e temporal para identificar estudos experimentais que utilizaram a ETCC anódica e/ ou catódica comparando-as a um grupo controle ou a um grupo sham, em ratos. Os critérios utilizados para avaliar a validade interna dos estudos experimentais foram: alojamento, iluminação, temperatura, água/dieta, randomização dos grupos e aspectos éticos. Para análise do risco de viés dos estudos, foi utilizada a ferramenta Laboratory Systematic Review Center for Laboratory animal Experimentation (SYRCLE). Os parâmetros elétricos e fluxo sanguíneo cerebral foram considerados como desfechos primários e a avaliação de alterações histológicas cerebrais como desfecho secundário. Resultados: Quatro artigos foram incluídos. Todos os artigos foram classificados como alto risco de viés. Os instrumentos de avaliação e os parâmetros elétricos aplicados foram heterogêneos, entretanto, viu-se que a estimulação anódica promoveu um aumento do fluxo cerebral sanguíneo e a estimulação catódica efeito contrário. Dois estudos realizaram avaliação histológica cerebral e destacaram a presença de necrose tecidual em apenas um animal de cada estudo. Conclusão: Diante da diversidade dos protocolos da ETCC, não foi possível determinar os parâmetros elétricos eficazes na promoção de alterações do fluxo sanguíneo cerebral em ratos. Devido ao alto risco de viés nos artigos incluídos, as evidências disponíveis sobre a eficácia da ETCC são insuficientes e inconclusivas.

Referências

Bhattacharya, A., Mrudula, K., Sreepada, S. S., Sathyaprabha, T. N., Pal, P. K., Chen, R., & Udupa, K. (2021). An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 1–14. Retrieved from https://www.cambridge.org/core/product/identifier/S031716712100158X/type/journal_article

Bornheim, S., Croisier, J.-L., Maquet, P., & Kaux, J.-F. (2020). Transcranial direct current stimulation associated with physical-therapy in acute stroke patients - A randomized, triple blind, sham-controlled study. Brain Stimulation, 13(2), 329–336. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1935861X19304280

Corrêa, M. J. U., Perazzio, S. F., Andrade, L. E. C., & Kayser, C. (2010). Laser doppler imaging para quantificação do fluxo sanguíneo de polpa digital em condições basais e após estímulo frio em pacientes com esclerose sistêmica. Revista Brasileira de Reumatologia, 50(2), 128–40.

Cyr, M. P., Pinard, A., Dubois, O., & Morin, M. (2019). Reliability of vulvar blood perfusion in women with provoked vestibulodynia using laser Doppler perfusion imaging and laser speckle imaging. Microvascular Research, 121, 1–6.

Deguchi, B. G. F., Tamioso, P. R., & Molento, C. F. M. (2016). Percepção de equipes laboratoriais quanto a questões de bem-estar animal. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 68(1), 48–56.

Ding, H., Hu, G. L., Zheng, X. Y., Chen, Q., Threapleton, D. E., & Zhou, Z. H. (2015). The method quality of cross-over studies involved in Cochrane Systematic Reviews. PLoS ONE, 10(4), 1–8.

Dutta, A. (2015). Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS. Frontiers in Systems Neuroscience, 9, 1–7.

Dutta, A., Jacob, A., Chowdhury, S. R., Das, A., & Nitsche, M. A. (2015). EEG-NIRS Based Assessment of Neurovascular Coupling During Anodal Transcranial Direct Current Stimulation - a Stroke Case Series. Journal of Medical Systems, 39(4).

Garnett, E. O., Malyutina, S., Datta, A., & den Ouden, D.-B. (2015). On the use of the terms anodal and cathodal in high-definition transcranial direct current stimulation: A technical note. Neuromodulation: Technology at the Neural Interface, 18(8), 705–713.

Ghanavati, E., Salehinejad, M. A., De Melo, L., Nitsche, M. A., & Kuo, M.-F. (2022). NMDA receptor-related mechanisms of dopaminergic modulation of tDCS-induced neuroplasticity. Cerebral cortex (New York, N.Y. : 1991). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/35165699

Ghasemian-Shirvan, E., Mosayebi-Samani, M., Farnad, L., Kuo, M.-F., Meesen, R. L. J., & Nitsche, M. A. (2022). Age-dependent non-linear neuroplastic effects of cathodal tDCS in the elderly population: a titration study. Brain Stimulation, 15(2), 296–305. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1935861X22000122

Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., Launer, L. J., et al. (2011). Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(9), 2672–2713.

Gozalov, A., Jansen-Olesen, I., Klaerke, D., & Olesen, J. (2008). Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat. Headache, 48(8), 1202–1213.

Han, C. H., Song, H., Kang, Y. G., Kim, B. M., & Im, C. H. (2014). Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study. Biomedical optics express, 5(6), 1812–21.

Hooijmans, C. R., Leenaars, M., & Ritskes-Hoitinga, M. (2010). A Gold Standard Publication Checklist to Improve the Quality of Animal Studies, to Fully Integrate the Three Rs, and to Make Systematic Reviews More Feasible. Alternatives to Laboratory Animals, 38(2), 167–182.

Hooijmans, C. R., Rovers, M. M., Vries, R. B. M. De, Leenaars, M., Ritskes-hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14(1), 1–9. BMC Medical Research Methodology.

Hu, S., Zheng, T., Dong, Y., Du, J., & Liu, L. (2018). Effect of Anodal Direct-Current Stimulation on Cortical Hemodynamic Responses With Laser-Speckle Contrast Imaging. Frontiers in Neuroscience, 12(July), 1–6.

Jackson, M. P., Truong, D., Brownlow, M. L., Wagner, J. A., McKinley, R. A., Bikson, M., & Jankord, R. (2017). Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats. Brain, Behavior, and Immunity, 64, 152–161.

Kim, S. J., Kim, B. K., Ko, Y. J., Bang, M. S., Kim, M. H., & Han, T. R. (2010). Functional and histologic changes after repeated transcranial direct current stimulation in rat stroke model. Journal of Korean Medical Science, 25(10), 1499–1505.

Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., Rothwell, J. C., et al. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience, 22(2), 495–504.

Leal, C., Bezerra, A., & Lemos, A. (2012). A efetividade do laser de HeNe 632,8 nm no reestabelecimento da integridade dos tecidos cutâneos em animais experimentais: revisão sistemática. Fisioterapia e Pesquisa, 19(3), 290–296.

Li, X., & Morton, S. M. (2020). Effects of chronic antidepressant use on neurophysiological responses to tDCS post-stroke. Neuroscience Letters, 717, 134723. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0304394019308262

Liebetanz, D., Koch, R., Mayenfels, S., König, F., Paulus, W., & Nitsche, M. A. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 120(6), 1161–1167.

Lima, A., & Bakker, J. (2011). Espectroscopia no infravermelho próximo para a monitorização da perfusão tecidual. Revista Brasileira de Terapia Intensiva, 23(3), 341–351.

Mielke, D., Wrede, A., Schulz-Schaeffer, W., Taghizadeh-Waghefi, A., Nitsche, M. a, Rohde, V., & Liebetanz, D. (2013). Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurological Research, 35(10), 1029–37.

Moisset, X., Pereira, B., Ciampi de Andrade, D., Fontaine, D., Lantéri-Minet, M., & Mawet, J. (2020). Neuromodulation techniques for acute and preventive migraine treatment: a systematic review and meta-analysis of randomized controlled trials. The Journal of Headache and Pain, 21(1), 142. Retrieved from https://thejournalofheadacheandpain.biomedcentral.com/articles/10.1186/s10194-020-01204-4

Montori, V. M., & Guyatt, G. H. (2001). Intention-to-treat principle. CMAJ, 165(10), 1339–1341.

Nitsche, M A, & Paulus, W. (2000a). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527.3, 633–9.

Nitsche, M A, & Paulus, W. (2000b). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639. Retrieved from https://onlinelibrary.wiley.com/doi/10.1111/j.1469-7793.2000.t01-1-00633.x

Nitsche, Michael A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., et al. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–23.

Nitsche, Michael A, & Paulus, W. (2011). Transcranial direct current stimulation--update 2011. Restorative neurology and neuroscience, 29(6), 463–92.

Orrù, G., Conversano, C., Hitchcott, P. K., & Gemignani, A. (2020). Motor stroke recovery after tDCS: a systematic review. Reviews in the Neurosciences, 31(2), 201–218. Retrieved from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0047/html

Pithon, M. M. (2013). Importance of the control group in scientific research. Dental Press Journal of Orthodontics, 18(6), 13–14.

Pulgar, V. M. (2015). Direct electric stimulation to increase cerebrovascular function. Frontiers in Systems Neuroscience, 9, 1–5.

Shin, D. W., Fan, J., Luu, E., Khalid, W., Xia, Y., Khadka, N., Bikson, M., et al. (2020). In Vivo Modulation of the Blood–Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Annals of Biomedical Engineering, 48(4), 1256–1270.

Shin, D. W., Khadka, N., Fan, J., Bikson, M., & Fu, B. M. (2016). Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo. Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging, 9788, 97881X.

Stagg, C. J., & Nitsche, M. A. (2011). Physiological Basis of Transcranial Direct Current Stimulation. The Neuroscientist, 17(1), 37–53.

Takano, Y., Yokawa, T., Masuda, A., Niimi, J., Tanaka, S., & Hironaka, N. (2010). Development of a rat model for transcranial direct current stimulation (tDCS): effectiveness measurement using fMRI. Neuroscience Research, 68, e182.

Takano, Y., Yokawa, T., Masuda, A., Niimi, J., Tanaka, S., & Hironaka, N. (2011). A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neuroscience Letters, 491(1), 40–43.

Urban, A., Mace, E., Brunner, C., Heidmann, M., Rossier, J., & Montaldo, G. (2014). Chronic assessment of cerebral hemodynamics during rat forepaw electrical stimulation using functional ultrasound imaging. NeuroImage, 101, 138–149.

Visocchi, M. (2008). Neuromodulation of cerebral blood flow by spinal cord electrical stimulation: the role of the Italian school and state of art. Journal of Neurosurgical Sciences, 52(2), 41–7.

Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., Kozák, G., et al. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1).

Wachter, D., Wrede, A., Schulz-Schaeffer, W., Taghizadeh-Waghefi, A., Nitsche, M. A., Kutschenko, A., Rohde, V., et al. (2011). Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Experimental Neurology, 227(2), 322–7.

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. International Federation of Clinical Neurophysiology.

Yu, K. P., Yoon, Y. S., Lee, J. G., Oh, J. S., Lee, J. S., Seog, T., & Lee, H. Y. (2018). Effects of electric cortical stimulation (ECS) and transcranial direct current stimulation (tDCS) on rats with a traumatic brain injury. Annals of Rehabilitation Medicine, 42(4), 502–513.

Zhang, K., Guo, L., Zhang, J., An, G., Zhou, Y., Lin, J., Xing, J., et al. (2019). A safety study of 500 μa cathodal transcranial direct current stimulation in rat. BMC Neuroscience, 20(1).

Zhang, K. Y., Rui, G., Zhang, J. P., Guo, L., An, G. Z., Lin, J. J., He, W., et al. (2020). Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neuroscience, 21(1).

Zheng, X., Alsop, D. C. D., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage, 58(1), 617–632.

Downloads

Publicado

17/06/2022

Como Citar

ALMEIDA, C. C. S. de; VALENÇA, M. M.; ROSAS, . E. P. .; MONTENEGRO, E. J. N. .; ALVES, L. I. do N. .; WANDERLEY, D.; TENÓRIO, . A. da S. .; OLIVEIRA, D. A. de . Parâmetros elétricos da estimulação transcraniana por corrente contínua efetivos para alterações do fluxo sanguíneo cerebral de animais experimentais: uma revisão sistemática. Research, Society and Development, [S. l.], v. 11, n. 8, p. e22811830794, 2022. DOI: 10.33448/rsd-v11i8.30794. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30794. Acesso em: 2 jul. 2024.

Edição

Seção

Ciências da Saúde