Settling process of cassava starch using natural coagulant from Moringa oleifera Lam seed extract

Authors

DOI:

https://doi.org/10.33448/rsd-v9i5.3169

Keywords:

Tapioca starch; Batch settling test; Sustainability.

Abstract

Cassava starch has many known applications in food, paper, glue and textile industries, including even biodegradable packaging. In small and medium industries, the starch is obtained by washing the peeled and grinded manioc roots, followed by leaving the washwater for settling before drying the concentrated slurry. Since starch particles are very fine and have a low density, their settling time is high, resulting in a batch operation that lasts for 18 to 24 h. Therefore, it becomes suitable to form larger and heavier starch sets by means of applying coagulants, allowing the particles to settle faster. In the work reported here, the natural coagulant M. oleifera seed extract was used to decrease the settling time of the cassava starch. The effect of the initial concentration of the particles and the coagulant content on the final sedimentation time was evaluated on the batch settling tests. The results showed that the use of the coagulant reduced the sedimentation time in a beaker from 14h to 2h, allowing a quick batch operation.

Author Biographies

Amarílis Severino e Souza, Federal University of Triângulo Mineiro

Chemical Engineering Department

Kassia Graciele dos Santos, Federal University of Triangulo Mineiro

Chemical Engineering Department

References

Alalm, M. G.; Nasr, M. & Shinichi, O. (2016). Assessment of a novel spiral hydraulic flocculation/sedimentation system by CFD simulation, fuzzy inference system, and response surface methodology. Separation and Purification Technology. 169, 137-150.

American Water Works Association (AWWA). (1990). Water quality and treatment: a handbook of community water supplies. McGraw Hill Publishing Company, 4th edition, New York.

Andrade, W.A.; Cruz, G.P.; Silva, M.S.; Santos, M.F.O.; Silva, G.F. & Santos, J.P.L. (2020). Synthesis of a tensoative based on oil Moringa Oleífera Lam and formulation of microemulsioned systems for breaking oil water emulsions. Research, Society and Development, 9 (2), e193922194.

Anwar, F.; Latif, S.; Ashraf, M. & Gilani, A.H. (2007). Moringa oleifera: A Food Plant with Multiple Medicinal Uses. Phytother Res., 21, 17-25.

Arouca, F.O., Lopes, L.C.O. & Damasceno, J.J.R. (2006). Concentration Profiles and Iso-Concentration Curves for Batch Settling Using the Gamma Rays Attenuation Technique. Materials Science Forum, 530-531, 29-34

Câmara, G.B., Oliveira, T.K.B., Leite, D.D.F., Soares, T.C., Lima, A.R.N., Vasconcelos, S.H., Barbosa , M.L. & Trigueiro, L.S.L. (2019). Physico-chemical, toxicological and nutritional characterization of dry and in natura Moringa oleifera Lam leaves, Research, Society and Development, 8(11), e178111450.

Cereda, M. P. (2005). Indústria de fécula. In: Farias, A. R. N. et al. Processamento e utilização da mandioca. 1ª ed. Cruz das Almas: Embrapa Mandioca e Fruticultura Tropical.

Daiuto, R.R.; Cereda, M. P.; Carvalho, J. J. C. B. (2002). Biossíntese de amido. In: Cereda, M. P.; Vilpoux, O. (Coord.). Propriedades gerais de amido. São Paulo: Fundação Cargill, 57-73.

D’souza, J. & Kulkarni, A.R. (1993). Comparative studies on nutritive values of tender foliage of seedlings and mature plants of Moringa oleifera Lam. J. Econ. Taxon. Bot., 17, 479–485.

Fatombi, J. K.; Lartiges, B.; Aminou, T.; Barres, O. & Caillet, C. (2013). A natural coagulant protein from copra (Cocos nucifera): Isolation, characterization, and potential for water purification. Separation and Purification Technology, 116, 35-40, 2013.

Felipe, F. I. (2010). Panorama e perspectivas para a indústria de fécula de mandioca no Brasil. Revista Raízes e Amidos Tropicais, 6, 134-146.

Felipe, F.I. (2018). Competitiveness of the cassava starch industry in Brazil and in Thailand. CEPEA - Center for Advanced Studies on Applied Economics. Acessado dia 10 de março de 2020. https://www.cepea.esalq.usp.br/en/opinion/competitiveness-of-the-cassava-starch-industry-in-brazil-and-in-thailand.aspx

Fernandes, N. M. G.; Ginoris, Y.P.; Rios, R.H.T. & Brandão, C.C.S. (2010). Influência do pH de coagulação e da dose de sulfato de alumínio na remoção de oocistos de Crystosporidium por filtração direta descendente. Engenharia Sanitária e Ambiental. 15(4), 375-384.

Grabow W.O.K.; Slabert J.L.; Morgan W.S.G. & Jahn S.A.A. (1985). Toxicity and mutagenicity evaluation of water coagulated with Moringa oleifera seed preparations using fish, protozoan, bacterial, enzyme and Ames Salmonella assays. Water SA., 11, 9-14.

Jahn, S. A. A. (1989). Moringa oleifera for food and water purification – selection of clones and growing of anual short stem. Entwicklung Landlicher Raum., 23(4), 22-25.

Landman, K. A.; White, L. R. & Buscall, R. (1988), The continuous-flow gravity thickener: steady state behavior. AIChE Journal, 34(2), 239-252.

Lima, U. A. (1982). Manual técnico de beneficiamento e industrialização da mandioca. São Paulo: Secretaria de Ciência e Tecnologia, v.2. 56 p.

Matsuura, F. C. A. U.; Folegatti, M. I. S. & Sarmento, S. (2003). Iniciando um pequeno grande negócio agroindustrial: processamento de mandioca. Brasília: Embrapa/Sebrae.

Nasim, T.; Abhijit, P.; Arindam, G.; Goswami, L. & Bandyopadhyay, A. (2014). Exploring polyelectrolytic features of the exudate from native Acacia nilótica for flocculating aqueous kaolin suspension. Separation and Purification Technology,131, p. 50-59.

Ndabigengesere, A. & Narasiah, K. S. (1998). Quality of water treated by coagulation using Moringa oleifera seeds. Water research., 32(3), 781-791.

Ndabigengesere, A.; Narasiah, K. S. & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water research., 29(2), 703-710.

Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A.S. & O’Neill, J.G. (2010). A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification. Physics and Chemistry of the Earth, 35(13-14), 791-797.

Saengchan, K.; Nophratana, A. & Songkasiri, W. (2009). Enhancement of tapioca starch separation step with hydrociclone: effects of apex diameter, feed concentration, and pressure drop on tapioca starch separation with a hydrocyclone. Chemical Engineering and Processing. 48, 195-202.

Sajeev, M. S. & Kailappan, R. (2008). Effect of various processes on settling of cassava starch. Journal of Root Crops., 34(2), 148-156.

Santos, A.R.A., Cruz, L.A., Gontijo, H.M. (2019). Study of water and sewage systems in the rural community of Capela Branca in Bela Vista de Minas/MG. Research, Society and Development; 8(2), e4782740.

Schmitt, D. M. F. (2011). Tratamento de águas residuárias nas indústrias de laticínio pelos processos combinados coagulação/ floculação/ adsorção/ ultrafiltração utilizando semente de Moringa oleifera como coagulante. 2011. Dissertação de Mestrado. Universidade Estadual do Oeste do Paraná, Paraná, Brazil.

Souza, C. M. & Bragança, M. G. (2000). Processamento artesanal da mandioca: fabricação do polvilho. Empresa de Assistência Técnica e Extensão Rural do Estado de Minas Gerais - EMATER-MG, Belo Horizonte.

Stoppe, A.C.R.; Vieira Neto, J.L. & Santos, K.G. (2020). Development of a fixed bed solar dryer: experimental study and CFD simulations. Research, Society and Development, 9(3), e123932667.

Verdcourt, B.A. (1985). A synopsis of the Moringaceae. Kew Bull. 40, 1-23.

Zhao, S. & Zhang, D. A. (2013). parametric study of supercritical carbono dioxide extraction of oil from Moringa oleifera seeds using a response surface methodology. Separation and Purification Technology, 113, 9-17.

Downloads

Published

27/03/2020

How to Cite

SOUZA, A. S. e; SANTOS, K. G. dos. Settling process of cassava starch using natural coagulant from Moringa oleifera Lam seed extract. Research, Society and Development, [S. l.], v. 9, n. 5, p. e28953169, 2020. DOI: 10.33448/rsd-v9i5.3169. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3169. Acesso em: 22 dec. 2024.

Issue

Section

Engineerings