Innovation in the treatment of aortic stenosis using 3D printing
DOI:
https://doi.org/10.33448/rsd-v11i14.35450Keywords:
Anatomy; Cardiology; Surgery; Medical education.Abstract
The use of 3D pieces advances in a broader sense of education, towards interdisciplinarity. Several areas already use this technology to teach the academic community, even more complex research such as organ printing, and applications of design in prostheses. Current technology allows for the accurate printing of cardiac anatomy on materials that resemble the real properties of the heart and vessels, allowing the exploration of options, challenges, and possibilities of 3D printing in the field of valvular heart disease, to provide an insight into the current state of the art and development in this area specifically. Thus, the present study describes the potential in the teaching-learning process, regarding aortic stenosis, using Hands-on methodologies and models produced in a 3D printer. An integrative literature review was performed using the MeSH terms: “3d printing” and “aortic stenosis”. The advent of 3D printing technology can create anatomically accurate and patient-specific physical models, converting virtual 3D images on the computer's flat screen into palpable 3D models suitable for interventional simulation, allowing for a reduction in surgical time. The use of 3D printed models can facilitate the development of new devices and new surgical techniques. However, the limitations of this model still come up against the high cost, the image quality of the exam and the time for printing.
References
Araujo, M. C. E., Duarte, M. M. S., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Contribuições da engenharia reversa e produção de modelos 3D para o ensino médico. Research, Society and Development, 10(11), e385101119692. https://doi.org/10.33448/rsd-v10i11.19692
Bompotis, G., Meletidou, M., Karakanas, A., Sotiriou, S., Sachpekidis, V., Konstantinidou, M., Spanopoulos, K., Styliadis, I., & Lazaridis, I. (2020). Transcatheter Aortic Valve Implantation using 3-D printing modeling assistance. A single-center experience. Hellenic journal of cardiology: HJC = Hellenike kardiologike epitheorese, 61(2), 131–132. https://doi.org/10.1016/j.hjc.2019.01.012
Corrigan, F. E., Gleason, P. T., Condado, J. F., Lisko, J. C., Chen, J. H., Kamioka, N., Keegan, P., Howell, S., Clements, S. D., Jr, Babaliaros, V. C., & Lerakis, S. (2019). Imaging for Predicting, Detecting, and Managing Complications After Transcatheter Aortic Valve Replacement. JACC. Cardiovascular imaging, 12(5), 904–920. https://doi.org/10.1016/j.jcmg.2018.07.036
Duarte, M. M. S., Araujo, M. C. E., Louredo, L. M., Louredo, J. M., & Arruda, J. T. (2021). Aplicabilidades da técnica de fotogrametria no ensino de Anatomia Humana. Research, Society and Development, 10(11), e51101119328. https://doi.org/10.33448/rsd-v10i11.19328
Fan, Y., Wong, R., & Lee, A. P. (2019). Three-dimensional printing in structural heart disease and intervention. Annals of translational medicine, 7(20), 579. https://doi.org/10.21037/atm.2019.09.73
Garcia, T. R., Macedo, R. M., Vaz, M. H. V., Borges, G. H. I., Zendron, I. M., & Arruda, J. T. (2022). Impressão 3D de peças anatômicas como ferramentas de educação e auxílio na prática clínica. Research, Society and Development, 11(13), e248111335234. https://doi.org/10.33448/rsd-v11i13.35234
Grimard, B. H., Safford, R. E., & Burns, E. L. (2016). Aortic Stenosis: Diagnosis and Treatment. American family physician, 93(5), 371–378.
Hussein, N., Honjo, O., Barron, D. J., & Yoo, S. J. (2021). Supravalvular aortic stenosis repair: surgical training of 2 repair techniques using 3D-printed models. Interactive cardiovascular and thoracic surgery, 33(6), 966–968. https://doi.org/10.1093/icvts/ivab198
Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes.
Lau, I., & Sun, Z. (2018). Three-dimensional printing in congenital heart disease: A systematic review. Journal of medical radiation sciences, 65(3), 226–236. https://doi.org/10.1002/jmrs.268
Levin, D., Mackensen, G. B., Reisman, M., McCabe, J. M., Dvir, D., & Ripley, B. (2020). 3D Printing Applications for Transcatheter Aortic Valve Replacement. Current cardiology reports, 22(4), 23. https://doi.org/10.1007/s11886-020-1276-8
Lindman, B. R., Dweck, M. R., Lancellotti, P., Généreux, P., Piérard, L. A., O'Gara, P. T., & Bonow, R. O. (2020). Management of Asymptomatic Severe Aortic Stenosis: Evolving Concepts in Timing of Valve Replacement. JACC. Cardiovascular imaging, 13(2 Pt 1), 481–493. https://doi.org/10.1016/j.jcmg.2019.01.036
Louredo, L. M., Duarte, M. M. S., Araújo, M. C. E., Louredo, J. M., & Arruda, J. T. (2021). Uso de prototipagem rápida ou manufatura aditiva para estudos de casos clínicos e planejamento de técnica cirúrgica utilizando modelos 3D. Research, Society and Development, 10(12), e336101220403. https://doi.org/10.33448/rsd-v10i12.20403
Memon, S., Friend, E., Samuel, S. P., Goykhman, I., Kalra, S., Janzer, S., & George, J. C. (2021). 3D Printing of Carotid Artery and Aortic Arch Anatomy: Implications for Preprocedural Planning and Carotid Stenting. The Journal of invasive cardiology, 33(9), E723–E729.
Milano, E. G., Capelli, C., Wray, J., Biffi, B., Layton, S., Lee, M., Caputo, M., Taylor, A. M., Schievano, S., & Biglino, G. (2019). Current and future applications of 3D printing in congenital cardiology and cardiac surgery. The British journal of radiology, 92(1094), 20180389. https://doi.org/10.1259/bjr.20180389
Moro, F. H., Carvalho, R. A., Barud, H. S., Amaral, A. C., & Silva, E. J. (2022). Modificação de bico de impressora 3D para obtenção de suportes para uso em medicina regenerativa. Research, Society and Development, 11(6), e58111629472. https://doi.org/10.33448/rsd-v11i6.29472
Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(11), 1900344. https://doi.org/10.1002/advs.201900344
Ripley, B., Kelil, T., Cheezum, M. K., Goncalves, A., Di Carli, M. F., Rybicki, F. J., Steigner, M., Mitsouras, D., & Blankstein, R. (2016). 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. Journal of cardiovascular computed tomography, 10(1), 28–36. https://doi.org/10.1016/j.jcct.2015.12.004
Sousa, M. M. C., Bezerra, I. N., Nogueira, F. D., Veras, L. M. C., & Bezerra, D. M. (2021). O manejo pós operatório do implante do valvar aórtico percutâneo com uso de anticoagulantes e antiagregantes plaquetários: Uma revisão de literatura. Research, Society and Development, 10(6), e58410615631. https://doi.org/10.33448/rsd-v10i6.15631
Thorburn, C., Abdel-Razek, O., Fagan, S. et al. (2020). Three-dimensional printing for assessment of paravalvular leak in transcatheter aortic valve implantation. Journal of Cardiothoracic Surgery,15(1), 211. https://doi.org/10.1186/s13019-020-01255-3
Tuncay, V., & van Ooijen, P. (2019). 3D printing for heart valve disease: a systematic review. European radiology experimental, 3(1), 9. https://doi.org/10.1186/s41747-018-0083-0
Utiyama, B., Hernandes, C., Senra, T., Gospos, M., Sá, R., Leme, J., Fonseca, J., Drigo, E., Leão, T., Pinto, I., & Andrade, A. (2014). Construção de biomodelos por impressão 3D para uso na prática clínica: experiencia do Instituto Dante Pazzanese de Cardiologia. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB. Disponível em: https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_095.pdf
Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D Printing and its Future Directions. JACC. Cardiovascular imaging, 10(2), 171–184. https://doi.org/10.1016/j.jcmg.2016.12.001
Xenofontos, P., Zamani, R., & Akrami, M. (2022). The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review. Biomedical engineering online, 21(1), 59. https://doi.org/10.1186/s12938-022-01029-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Guilherme Henrique Iaccino Borges; Igor Mundim Zendron; Matheus Hernandes Vieira Vaz; Rafaela Melo Macedo; Thaís Ribeiro Garcia; Larissa Schults Teixeira; Deborah Gerrane Damásio Nascimento; Laize Evelyn Magalhães de Brito Alvares; Caroline Almeida Resplande; Anna Laura Silva Oliveira; Guilherme Martins Tolini; Jalsi Tacon Arruda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.