Proposal of geovisualization metamodels implemented with adaptative resources

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.35471

Keywords:

Contextualization; Geovisualization; Metamodels; Recommendation.

Abstract

The large volume of government data made available recently raises questions about the best way to display this data to the user. There is a direct relationship between most government portals called transparency portals, with a geographic region, whether this region is a city, state or country. User characteristics can influence the way they interact with applications, a way to soften this problem would be the use of information contextualization. It brings the user information based on their preferences, facilitating the interpretation and understanding of the data. For contextualization to occur, prior information is needed, which are usually collected through questions before the actual use, so that the application correctly filters the results. Therefore, this research proposed and developed new geovisualization metamodels and demonstrated their use by implementing them with adaptable resources according to the user's profile. The choice of the model indicated for each profile considered the information obtained from the user, through the collection of responses in form format. Finally, the metamodels were written in library format and made available on the npm portal.

References

Abdelwahed, A. M. (2021). Interactive Map of Natural Reserves in Egypt Using Open-Source Web GIS Tools [Thesis]. Menoufia University.

Breitman, K., Salas, P., Casanova, M. A., Saraiva, D., Gama, V., Viterbo, J., Magalhaes, R. P., Franzosi, E., & Chaves, M. (2012). Open government data in Brazil. IEEE Intelligent Systems, 27(3), 45–49. https://doi.org/10.1109/MIS.2012.25

Chang, K. (2019). Geographic Information System. In International Encyclopedia of Geography: People, the Earth, Environment and Technology (pp. 1–10). Wiley. https://doi.org/10.1002/9781118786352.wbieg0152.pub2

Chen, C. (2010). Information visualization. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 387–403. https://doi.org/10.1002/wics.89

Cordeiro, A. M., Oliveira, G. M. de, Rentería, J. M., & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Revista Do Colégio Brasileiro de Cirurgiões, 34(6), 428–431. https://doi.org/10.1590/S0100-69912007000600012

Degbelo, A., & Kray, C. (2018). Intelligent geovisualizations for open government data (vision paper). Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 77–80. https://doi.org/10.1145/3274895.3274940

Edler, D., Keil, J., Tuller, M.-C., Bestgen, A.-K., & Dickmann, F. (2020). Searching for the ‘Right’ Legend: The Impact of Legend Position on Legend Decoding in a Cartographic Memory Task. The Cartographic Journal, 57(1), 6–17. https://doi.org/10.1080/00087041.2018.1533293

Encarnação, L. M. (2017). Information Visualization. IEEE Computer Graphics and Applications, 37(2), 6–7. https://doi.org/10.1109/MCG.2017.25

Ferreira, A. R., Silva, A. C., Barreto Junior, C. de L., Lima, D. A. C. de, & Sousa, L. C. O. (2022). Revisão da literatura: uso do conceito BIM em projetos do setor elétrico nos cenários (Inter)Nacional. Research, Society and Development, 11(6), e37211629144. https://doi.org/10.33448/rsd-v11i6.29144

Fujishiro, I., Ichikawa, Y., Furuhata, R., & Takeshima, Y. (2000). GADGET/IV: a taxonomic approach to semi-automatic design of information visualization applications using modular visualization environment. IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings, 77–83. https://doi.org/10.1109/INFVIS.2000.885093

Gershon, N. D., & Eick, S. G. (1997). Information Visualization Applications in the Real World. IEEE Computer Graphics and Applications, 17(4), 66.

Hässig, D. C. (2020). Development of Adaptive Heatmaps for Interactive Feed Explorations [BA thesis]. University of Zurich.

Howari, F. M., & Ghrefat, H. (2021). Geographic information system: spatial data structures, models, and case studies. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering (pp. 165–198). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-809582-9.00004-9

Huang, H. (2019). Development and Evaluation of HealthWebMapper: A Web-based User-friendly Geovisualization Tool for Cancer Disparities [Thesis]. San Diego State University.

Hussain, J., Ul Hassan, A., Muhammad Bilal, H. S., Ali, R., Afzal, M., Hussain, S., Bang, J., Banos, O., & Lee, S. (2018). Model-based adaptive user interface based on context and user experience evaluation. Journal on Multimodal User Interfaces, 12(1), 1–16. https://doi.org/10.1007/s12193-018-0258-2

Kessler, F. C., Battersby, S. E., Finn, M. P., & Clarke, K. C. (2017). Map Projections and the Internet. In Choosing a Map Projection. Lecture Notes in Geoinformation and Cartography (pp. 117–148). Springer, Cham. https://doi.org/10.1007/978-3-319-51835-0_4

Kolekar, S. v., Pai, R. M., & M. M., M. P. (2019). Rule based adaptive user interface for adaptive E-learning system. Education and Information Technologies, 24(1), 613–641. https://doi.org/10.1007/s10639-018-9788-1

Mohagheghi, P., & Dehlen, V. (2008). A Metamodel for Specifying Quality Models in Model-Driven Engineering. Proceedings of the Nordic Workshop on Model Driven Engineering.

Nivala, A.-M., & Sarjakoski, T. L. (2007). User Aspects of Adaptive Visualization for Mobile Maps. Cartography and Geographic Information Science, 34(4), 275–284. https://doi.org/10.1559/152304007782382954

Ottley, A. (2020). Adaptive and Personalized Visualization (1st ed., Vol. 7). Springer Cham. https://doi.org/10.1007/978-3-031-02607-2

Possamai, A. J., & de Souza, V. G. (2020). Transparência e Dados Abertos Governamentais: Possibilidades e Desafios a Partir da Lei De Acesso À Informação. Administração Pública e Gestão Social. https://doi.org/10.21118/apgs.v12i2.5872

Stefanakis, E. (2017). Web mercator and raster tile maps: two cornerstones of online map service providers. Geomatica, 71(2), 100–109. https://doi.org/10.5623/cig2017-203

Steichen, B., Carenini, G., & Conati, C. (2013). User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. Proceedings of the 2013 International Conference on Intelligent User Interfaces - IUI ’13, 317. https://doi.org/10.1145/2449396.2449439

Steichen, B., Wu, M. M. A., Toker, D., Conati, C., & Carenini, G. (2014). Te,Te,Hi,Hi: Eye Gaze Sequence Analysis for Informing User-Adaptive Information Visualizations. In V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog, & GJ. Houben (Eds.), User Modeling, Adaptation, and Personalization. UMAP 2014. Lecture Notes in Computer Science (LNISA) (Vol. 8538, pp. 183–194). Springer, Cham. https://doi.org/10.1007/978-3-319-08786-3_16

Toker, D., Conati, C., Carenini, G., & Haraty, M. (2012). Towards Adaptive Information Visualization: On the Influence of User Characteristics. In J. Masthoff, B. Mobasher, M. C. Desmarais, & R. Nkambou (Eds.), User Modeling, Adaptation, and Personalization. UMAP 2012. Lecture Notes in Computer Science (LNISA) (Vol. 7379, pp. 274–285). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31454-4_23

Published

19/10/2022

How to Cite

SILVA, Ítalo M.; SILVA, A. C.; SILVA, L. C. R. da; ALVES, J. da S.; FERREIRA, A. R.; BARRETO JUNIOR, C. de L.; LIMA, D. A. C. de; SOUSA, L. C. O. Proposal of geovisualization metamodels implemented with adaptative resources. Research, Society and Development, [S. l.], v. 11, n. 14, p. e46111435471, 2022. DOI: 10.33448/rsd-v11i14.35471. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35471. Acesso em: 5 jan. 2025.

Issue

Section

Human and Social Sciences