Effect of polycarbonate and agricultural film on production and biochemical compounds of tomato fruits

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35848

Keywords:

Solanum lycopersicum (L.); Protected cultivation; Tropical horticulture; Polycarbonate box shape twinwall.

Abstract

Tomato production has been enhanced significantly by management using intervention of temperature and radiation control in a protected environment. The use of plastic and/or polycarbonate covers changes the dynamics of production in tropical climate regions. The present study aimed to compare the following covered cultivation conditions: 1) polycarbonate plate (10 mm) box-shaped polycarbonate with a twin wall with anti UV-A and B (P), 2) agricultural film (AF) anti UV-A and UV-B, and 3) open field (OF) on the productivity and quality of Italian hybrid tomatoes. The study was carried out at Embrapa Agrossilvipastoril located in Sinop, Mato Grosso, Brazil. Four tomato hybrids and 03 distinct environments were used in a randomized block design in a subplot setup with five replications. The main factor was hybrid traits, and the subplots were environments with different covers. The highest productivity occurred in the P environment, with the hybrids Fascinio and Vedette with 66.64 and 55.84 t ha-1, respectively. The highest plant yield obtained was in the P environment, with an average of 3.15 kg per plant. Among the evaluated hybrids, the highest antioxidant potential was observed in Shanty, and for the content of carotenoids, lycopene, and vitamin C, no significant difference was observed between the evaluated hybrids. We can conclude that the use of polycarbonate plates box shaped with a twinwall or agricultural film in a protected tomato cultivation system under high temperature conditions increases the yield and qualitative potential of the Fascinio and Vedette hybrids.

References

Abdel-Ghany, A. M., Picuno, P., Al-Helal, I., Alsadon, A., Ibrahim, A., & Shady, M. (2015). Radiometric characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies, 8 (12), 13928-13937.

Ahemd, H. A., Al-Faraj, A. A., & Abdel-Ghany, A. M. (2016). Shading greenhouses to improve the microclimate, energy and water saving in hot regions: a review. Scientia Horticulturae, 201, 36-45. https://doi.org/10.1016/j.scienta.2016.01.030

Andriolo, J.L. (2000). Fisiologia da produção de hortaliças em ambiente protegido. Horticultura Brasileira, 18, 26-33.

Association of Official Analytical Chemists. (2000). Official Methods of Analysis of AOAC International. (17.ed.). Arlington, v.2.

Bazgaou, A., Fatnassi, H., Bouhroud, R., Gourdo, L., Ezzaeri, K., Tiskatine, R., Demrati, H., Wifaya, A., Bekkaoui, A., Aharoune, A., & Bouirden, L. (2018). An experimental study on the effect of a rock-bed heating system on the microclimate and the crop development under canarian greenhouse. Solar Energy, (176), 42-50. https://doi.org/10.1016/j.solener.2018.10.027

Beckmann, M. Z., Duarte, G. R. B., Paula, V. A. D., Mendez, M. E. G., & Peil, R. M. N. (2006). Radiação solar em ambiente protegido cultivado com tomateiro nas estações verão-outono do Rio Grande do Sul. Ciência Rural, 86-92.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). USE of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.

Castilla, N. (2013). Greenhouse Technology and Management. Ed. 2. (pp. 335). Boston: Cabi Publishing.

EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). (2013). Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de solos (p. 353). Rio de Janeiro.

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Revista brasileira de biometria, [S.l.], 37 (4), 529-535. doi: https://doi.org/10.28951/rbb.v37i4.450.

Florido, B. M., & Álvarez, G. M. (2015). Aspectos relacionados con el estrés de calor en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 36, 77(19).

Harel, D., Fadida, H., Alik, S., Gantz, S., & Shilo, K. (2014). The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy, Suíça, 4, 167-177.

Hemming, S., Kempkes, F., Van Der Braak, N., Dueck, T., & Marissen, N. (2005). Filtering natural light at the greenhouse covering-Better greenhouse climate and higher production by filtering out NIR?. In: V International Symposium on Artificial Lighting in Horticulture 711. 411-416.

Kidus, T., Areya, T., & Tesfay, W. (2020). Proportional Enactment of Tomato (Solanum Lycopersicum L. Mill) Varieties under Greenhouse Production Systems of Tigray Biotechnology Center, Ethiopia. International Journal of Research in Agriculture and Forestry, 7, 01-11.

Kwon, J. K., Khoshimkhujaev, B., Lee, J. H., Yu, I. H., Park, K. S., & Choi, H. G. (2017). Growth and yield of tomato and cucumber plants in polycarbonate or glass greenhouses. Horticultural Science and Technology, 35(1), 79-87. https://doi.org/10.12972/kjhst.20170009

Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C. M.; Ribeiro, C., Dias, M. C., & Santos, C. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246, 777-784. DOI: https://doi.org/10.1016/j.scienta.2018.11.058

Maul, F.S.A., Sargent, C.A., Sims, E.A., Baldwin, M.O., & Balaban D.J. (2000). Tomato flavor and aroma quality as affected by storage temperature. J. Food Sci., 65, 1228-1237.

Mogharreb, M. M., & Abbaspour-Fard, M. H. (2019). Experimental study on the effect of a novel water injected polycarbonate shading on light transmittance and greenhouse interior conditions. Energy for Sustainable Development, 52, 26-32. https://doi.org/10.1016/j.esd.2019.07.002.

Mutwiwa, U. N., Tantau, H. J., Von Elsner, B., & Max, J. F. (2017). Effects of a near infrared-reflecting greenhouse roof cover on the microclimate and production of tomato in the tropics. Agricultural Engineering International: CIGR Journal, 19 (3), 70-79.

Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39 (10), 925-928.

Nakayama, M., Fujita, S. I., Watanabe, Y., Ando, T., Isozaki, M., & Iwasaki, Y. (2021). The effect of greenhouse cultivation under a heat insulation film covering on tomato growth, yield, and fruit quality in a subtropical area. The Horticulture Journal, UTD-249. https://doi.org/10.2503/hortj.UTD-249.

Neugart, S., & Schreiner, M. (2018). UVB and UVA as eustressors in horticultural and agricultural crops. (2018). Scientia Horticulturae, 234, 370-381. https://doi.org/10.1016/j.scienta.2018.02.021.

Nogueira, S. F., Grego, C. R., Quartaroli, C. F., Andrade, R. G., Holler, W. A., & Vital, D. M. (2011). Estimativa de estoque de carbono em sistema de produção de soja na região norte mato-grossense. In: Congresso Brasileiro De Ciência Do Solo, Uberlândia, MG. 33.

Otoni, B. D. S., Mota, W. F. D., Belfort, G. R., Silva, A. R. S., Vieira, J. C. B., & Rocha, L. D. S. (2012). Produção de híbridos de tomateiro cultivados sob diferentes porcentagens de sombreamento. Revista Ceres, 59, 816-825.

Papadopoulos, A. P., & Hao, X. (1997). Effects of three greenhouse cover materials on tomato growth, productivity, and energy use. Scientia Horticulturae, v. 70, 165-178.

PBMH - Programa Brasileiro Para Modernização da Horticultura. Norma de Classificação do Tomate. Centro de Qualidade em Horticultura. CQH/CEAGESP. São Paulo. 2003. (CQH, Documentos, 26).

Pereira, C., Marchi, G., & Silva, E. C. (2000). Produção de tomate-caqui em Estufa. Série extensão. Lavras: UFLA, 26p.

Radin, B., Bergamaschi, H., Junior, C.R., Barni, N.A., Matzenauer, R., & Didoné. I.A. (2003). Eficiência de uso da radiação fotossinteticamente ativa pela cultura do tomateiro em diferentes ambientes. Pesquisa Agropecuária Brasileira. 38. 1017-23.

Reis, L. S., Azevedo, C. A. V. D., Albuquerque, A. W., & Junior, J. F. S. (2013). Índice de área foliar e produtividade do tomate sob condições de ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 386-391. https://doi.org/10.1590/S1415-43662013000400005

Ribeiro, A.C. (1999). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5. Aproximação. Comissão de fertilidade do solo do estado de Minas Gerais.

Rocha, R. C. (2007). Uso de diferentes telas de sombreamento no cultivo protegido do tomateiro. 105 p. Tese (Doutorado em Agronomia) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista “Julio Mesquita Filho”, Botucatu.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (3), 144-158.

Seabra Junior. S., Casagrande, J. G., Toledo, C. A. L., Ponce, F. S., Ferreira, F.S., Zanuzo, M.R., Diamante, M.S., & Lima, G.P.P. (2022). Selection of thermotolerant Italian tomato cultivars with high fruit yield and nutritional quality for the consumer taste grown under protected cultivation. Scientia Horticulturae, 291. https://doi.org/10.1016/j.scienta.2021.110559

Subin, M. C., Karthikeyan, R., Periasamy, C., & Sozharajan, B. (2020). Verification of the greenhouse roof-covering-material selection using the finite element method. Materials Today: Proceedings, 21, 357-366. https://doi.org/10.1016/j.matpr.2019.05.462

Trento, D. A., Antunes, D. T., Fernandes Júnior, F., Zanuzo, M. R., Dallacort, R., & Seabra Júnior, S. (2021). Desempenho de cultivares de tomate italiano de crescimento determinado em cultivo protegido sob altas temperaturas. Nativa, 9(4), 359-356. https://doi.org/10.31413/nativa.v9i4.10945

Tilahun, S., Park, D. S., Seo, M. H., & Jeong, C. S. (2017). Review on factors affecting the quality and antioxidant properties of tomatoes. African Journal of Biotechnology, 16, 1678-1687.

Valeriano, T. T. B., Santana, M. J., De Souza, S. S., Pereira, U. C., & Campos, T. M. (2017). Lâmina ótima econômica para o tomateiro irrigado cv. Andréa e cultivado em ambiente protegido. Innovative Science & Technology Journal, 3 (2),13-19.

Downloads

Published

17/10/2022

How to Cite

ANTUNES, D. T.; PONCE, F. da S. .; PATARAICO JUNIOR, V. .; FERNANDES JUNIOR, F. .; CAMPOS, R. A. da S.; BOTELHO, S. de C. C. .; NASCIMENTO, M. S. P. do .; SEABRA JÚNIOR, S. .; ZANUZO, M. R. Effect of polycarbonate and agricultural film on production and biochemical compounds of tomato fruits. Research, Society and Development, [S. l.], v. 11, n. 13, p. e513111335848, 2022. DOI: 10.33448/rsd-v11i13.35848. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35848. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences