Efecto del policarbonato y la película agrícola sobre la producción y compuestos bioquímicos de frutos de tomate
DOI:
https://doi.org/10.33448/rsd-v11i13.35848Palabras clave:
Solanum lycopersicum (L.); Cultivo protegido; Horticultura tropical; Pared doble en forma de caja de policarbonato.Resumen
La producción de tomate se ha mejorado significativamente mediante la gestión mediante la intervención del control de la temperatura y la radiación en un entorno protegido. El uso de cubiertas de plástico y/o policarbonato cambia la dinámica de producción en las regiones de clima tropical. El presente estudio tuvo como objetivo comparar las siguientes condiciones de cultivo cubierto: 1) placa de policarbonato (10 mm) policarbonato en forma de caja con pared doble con anti UV-A y B (P), 2) película agrícola (AF) anti UV-A y UV-B, y 3) campo abierto (OF) sobre la productividad y calidad de los tomates híbridos italianos. El estudio fue realizado en la Embrapa Agrossilvipastoril situado en Sinop, Mato Grosso, Brasil. Se utilizaron cuatro híbridos de tomate y 03 ambientes distintos en un diseño de bloques al azar en una configuración de subparcelas con cinco repeticiones. El factor principal fueron los rasgos híbridos, y las subparcelas fueron ambientes con diferentes coberturas. La mayor productividad se presentó en el ambiente P, con los híbridos Fascinio y Vedette con 66,64 y 55,84 t ha-1, respectivamente. El mayor rendimiento de plantas obtenido fue en el ambiente P, con un promedio de 3,15 kg por planta. Entre los híbridos evaluados, el mayor potencial antioxidante se observó en Shanty, y para el contenido de carotenoides, licopeno y vitamina C, no se observó diferencia significativa entre los híbridos evaluados. Podemos concluir que el uso de placas de policarbonato en forma de caja con doble pared o película agrícola en un sistema de cultivo de tomate protegido en condiciones de alta temperatura aumenta el rendimiento y el potencial cualitativo de los híbridos Fascinio y Vedette.
Citas
Abdel-Ghany, A. M., Picuno, P., Al-Helal, I., Alsadon, A., Ibrahim, A., & Shady, M. (2015). Radiometric characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies, 8 (12), 13928-13937.
Ahemd, H. A., Al-Faraj, A. A., & Abdel-Ghany, A. M. (2016). Shading greenhouses to improve the microclimate, energy and water saving in hot regions: a review. Scientia Horticulturae, 201, 36-45. https://doi.org/10.1016/j.scienta.2016.01.030
Andriolo, J.L. (2000). Fisiologia da produção de hortaliças em ambiente protegido. Horticultura Brasileira, 18, 26-33.
Association of Official Analytical Chemists. (2000). Official Methods of Analysis of AOAC International. (17.ed.). Arlington, v.2.
Bazgaou, A., Fatnassi, H., Bouhroud, R., Gourdo, L., Ezzaeri, K., Tiskatine, R., Demrati, H., Wifaya, A., Bekkaoui, A., Aharoune, A., & Bouirden, L. (2018). An experimental study on the effect of a rock-bed heating system on the microclimate and the crop development under canarian greenhouse. Solar Energy, (176), 42-50. https://doi.org/10.1016/j.solener.2018.10.027
Beckmann, M. Z., Duarte, G. R. B., Paula, V. A. D., Mendez, M. E. G., & Peil, R. M. N. (2006). Radiação solar em ambiente protegido cultivado com tomateiro nas estações verão-outono do Rio Grande do Sul. Ciência Rural, 86-92.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). USE of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
Castilla, N. (2013). Greenhouse Technology and Management. Ed. 2. (pp. 335). Boston: Cabi Publishing.
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). (2013). Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de solos (p. 353). Rio de Janeiro.
Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Revista brasileira de biometria, [S.l.], 37 (4), 529-535. doi: https://doi.org/10.28951/rbb.v37i4.450.
Florido, B. M., & Álvarez, G. M. (2015). Aspectos relacionados con el estrés de calor en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 36, 77(19).
Harel, D., Fadida, H., Alik, S., Gantz, S., & Shilo, K. (2014). The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy, Suíça, 4, 167-177.
Hemming, S., Kempkes, F., Van Der Braak, N., Dueck, T., & Marissen, N. (2005). Filtering natural light at the greenhouse covering-Better greenhouse climate and higher production by filtering out NIR?. In: V International Symposium on Artificial Lighting in Horticulture 711. 411-416.
Kidus, T., Areya, T., & Tesfay, W. (2020). Proportional Enactment of Tomato (Solanum Lycopersicum L. Mill) Varieties under Greenhouse Production Systems of Tigray Biotechnology Center, Ethiopia. International Journal of Research in Agriculture and Forestry, 7, 01-11.
Kwon, J. K., Khoshimkhujaev, B., Lee, J. H., Yu, I. H., Park, K. S., & Choi, H. G. (2017). Growth and yield of tomato and cucumber plants in polycarbonate or glass greenhouses. Horticultural Science and Technology, 35(1), 79-87. https://doi.org/10.12972/kjhst.20170009
Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C. M.; Ribeiro, C., Dias, M. C., & Santos, C. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246, 777-784. DOI: https://doi.org/10.1016/j.scienta.2018.11.058
Maul, F.S.A., Sargent, C.A., Sims, E.A., Baldwin, M.O., & Balaban D.J. (2000). Tomato flavor and aroma quality as affected by storage temperature. J. Food Sci., 65, 1228-1237.
Mogharreb, M. M., & Abbaspour-Fard, M. H. (2019). Experimental study on the effect of a novel water injected polycarbonate shading on light transmittance and greenhouse interior conditions. Energy for Sustainable Development, 52, 26-32. https://doi.org/10.1016/j.esd.2019.07.002.
Mutwiwa, U. N., Tantau, H. J., Von Elsner, B., & Max, J. F. (2017). Effects of a near infrared-reflecting greenhouse roof cover on the microclimate and production of tomato in the tropics. Agricultural Engineering International: CIGR Journal, 19 (3), 70-79.
Nagata, M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39 (10), 925-928.
Nakayama, M., Fujita, S. I., Watanabe, Y., Ando, T., Isozaki, M., & Iwasaki, Y. (2021). The effect of greenhouse cultivation under a heat insulation film covering on tomato growth, yield, and fruit quality in a subtropical area. The Horticulture Journal, UTD-249. https://doi.org/10.2503/hortj.UTD-249.
Neugart, S., & Schreiner, M. (2018). UVB and UVA as eustressors in horticultural and agricultural crops. (2018). Scientia Horticulturae, 234, 370-381. https://doi.org/10.1016/j.scienta.2018.02.021.
Nogueira, S. F., Grego, C. R., Quartaroli, C. F., Andrade, R. G., Holler, W. A., & Vital, D. M. (2011). Estimativa de estoque de carbono em sistema de produção de soja na região norte mato-grossense. In: Congresso Brasileiro De Ciência Do Solo, Uberlândia, MG. 33.
Otoni, B. D. S., Mota, W. F. D., Belfort, G. R., Silva, A. R. S., Vieira, J. C. B., & Rocha, L. D. S. (2012). Produção de híbridos de tomateiro cultivados sob diferentes porcentagens de sombreamento. Revista Ceres, 59, 816-825.
Papadopoulos, A. P., & Hao, X. (1997). Effects of three greenhouse cover materials on tomato growth, productivity, and energy use. Scientia Horticulturae, v. 70, 165-178.
PBMH - Programa Brasileiro Para Modernização da Horticultura. Norma de Classificação do Tomate. Centro de Qualidade em Horticultura. CQH/CEAGESP. São Paulo. 2003. (CQH, Documentos, 26).
Pereira, C., Marchi, G., & Silva, E. C. (2000). Produção de tomate-caqui em Estufa. Série extensão. Lavras: UFLA, 26p.
Radin, B., Bergamaschi, H., Junior, C.R., Barni, N.A., Matzenauer, R., & Didoné. I.A. (2003). Eficiência de uso da radiação fotossinteticamente ativa pela cultura do tomateiro em diferentes ambientes. Pesquisa Agropecuária Brasileira. 38. 1017-23.
Reis, L. S., Azevedo, C. A. V. D., Albuquerque, A. W., & Junior, J. F. S. (2013). Índice de área foliar e produtividade do tomate sob condições de ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 386-391. https://doi.org/10.1590/S1415-43662013000400005
Ribeiro, A.C. (1999). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5. Aproximação. Comissão de fertilidade do solo do estado de Minas Gerais.
Rocha, R. C. (2007). Uso de diferentes telas de sombreamento no cultivo protegido do tomateiro. 105 p. Tese (Doutorado em Agronomia) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista “Julio Mesquita Filho”, Botucatu.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (3), 144-158.
Seabra Junior. S., Casagrande, J. G., Toledo, C. A. L., Ponce, F. S., Ferreira, F.S., Zanuzo, M.R., Diamante, M.S., & Lima, G.P.P. (2022). Selection of thermotolerant Italian tomato cultivars with high fruit yield and nutritional quality for the consumer taste grown under protected cultivation. Scientia Horticulturae, 291. https://doi.org/10.1016/j.scienta.2021.110559
Subin, M. C., Karthikeyan, R., Periasamy, C., & Sozharajan, B. (2020). Verification of the greenhouse roof-covering-material selection using the finite element method. Materials Today: Proceedings, 21, 357-366. https://doi.org/10.1016/j.matpr.2019.05.462
Trento, D. A., Antunes, D. T., Fernandes Júnior, F., Zanuzo, M. R., Dallacort, R., & Seabra Júnior, S. (2021). Desempenho de cultivares de tomate italiano de crescimento determinado em cultivo protegido sob altas temperaturas. Nativa, 9(4), 359-356. https://doi.org/10.31413/nativa.v9i4.10945
Tilahun, S., Park, D. S., Seo, M. H., & Jeong, C. S. (2017). Review on factors affecting the quality and antioxidant properties of tomatoes. African Journal of Biotechnology, 16, 1678-1687.
Valeriano, T. T. B., Santana, M. J., De Souza, S. S., Pereira, U. C., & Campos, T. M. (2017). Lâmina ótima econômica para o tomateiro irrigado cv. Andréa e cultivado em ambiente protegido. Innovative Science & Technology Journal, 3 (2),13-19.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Darley Tiago Antunes; Franciely da Silva Ponce; Vicente Pataraico Junior; Flávio Fernandes Junior; Renê Arnoux da Silva Campos; Silvia de Carvalho Campos Botelho; Maria Shirlyane Pereira do Nascimento; Santino Seabra Júnior; Marcio Roggia Zanuzo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.