Instrumentalization of the symbolic artifact 1st degree equations with two unknowns in a non-digital environment
DOI:
https://doi.org/10.33448/rsd-v11i14.36205Keywords:
Instrumentation; 1st degree linear equation with two unknowns; Graphic representation; Teaching; Symbolic artifact.Abstract
This article aims to analyse the process of instrumentalization of the symbolic artifact 1st degree equation with two unknowns in 8th grade elementary school students. The theoretical framework used was the Instrumentation Theory from the perspective of Pierre Rabardel. With a qualitative approach and an action-research design, the data were collected from observation, audio and video recordings and material produced by the students. Recognizing that the graphic representation of a 1st degree linear equation with two unknowns is a straight line in the Cartesian plane is the main objective of an instrumentalization process of this mathematical object and constitutes the starting point of the phenomenon of Instrumental Genesis. From the observations took, it was possible to point the groups realized that, even though each one has constructed rectangles of different dimensions, what evidently resulted in tables with different values, the algebraic expression to represent the regularity observed in the tables was the same, diverging only in the letters chosen by each group to represent the rectangle dimensions. Moreover, the groups realized their graphic representations diverged only in the chosen points but it was the same line, thus demonstrating the instrumentalization process of the present mathematic object.
References
Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3(3), 205-224.
Boaler, J. (2018). Mentalidades matemáticas: estimulando o potencial dos estudantes por meio da matemática criativa, das mensagens inspiradoras e do ensino inovador. Penso Editora.
Boaler, J., Munson, J., & Williams, C. (2018). Mentalidades Matemáticas na Sala de Aula: ensino fundamental. Penso Editora.
Brasil (2017). Base Nacional Comum Curricular. Ministério da Educação, Brasília.
Cohen, E. G., & Lotan, R. A. (2017). Planejando o trabalho em grupo: estratégias para salas de aula heterogêneas. Penso Editora.
Creswell, J. W., & Creswell, J. D. (2021). Projeto de pesquisa-: Métodos qualitativo, quantitativo e misto. Penso Editora.
García-Cuéllar, D. J., & Flores Salazar, J. V. (2019). Estudio de la génesis instrumental del artefacto simbólico simetría axial. TANGRAM - Revista De Educação Matemática, 2(3), 28–48. https://doi.org/10.30612/tangram.v2i3.9068.
García Cuéllar, D.J., & Martínez Miraval, M. A. (2018). Estudio del proceso de génesis instrumental del artefacto simbólico función exponencial. Transformación, 14(2), 252-261.
Gil, K. H., & Felicetti, V. L. (2016). Reflexões sobre as dificuldades apresentadas na aprendizagem da álgebra por estudantes da 7ª série. Revista Sergipana de Matemática e Educação Matemática, 1(1), 19-35.
Neto, A. L. X., & da Silva, M. J. F. (2017). Gênese Instrumental do artefato simbólico função de uma variável real definida por várias sentenças matemáticas em um ambiente não digital. UNIÓN-REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA, 13(51).
Notare, M. R., & Basso, M. (2017). Gênese instrumental do GeoGebra na formação de professores. ZETETIKÉ. Revista de Educação Matemática, 25(2), 305-323.
Pimentel, D. E. (2010). Metodologia da resolução de problemas no planejamento de atividades para a transição da Aritmética para a Álgebra. Dissertação
(Mestrado em Ensino de Ciências Exatas e Tecnologia) – Universidade Federal de São Carlos, São Carlos.
Rabardel, P. (1995). Les hommes et les technologies; une approche cognitive des instruments contemporains [Humans and technologies: A cognitive approach for contemporary instruments]. Paris: Armand Colin.
Rabardel, P. (2002). People and Technology: A cognitive approach to contemporary instruments. [Translated by Heidi Wood]. Paris: Université de Paris 8.
Brasil. Ministério da Educação. Base Nacional Comum Curricular – BNCC. Brasília, DF, 2017.
Silva, D. J. C. da , & Barros, J. V. (2022). Possibilities of using OneNote software incorporated in the Mathematics classroom to carry out activities: an analysis using the Instrumental Approach theory. Research, Society and Development, 11(4), e9011426943. https://doi.org/10.33448/rsd-v11i4.26943
Thiollent, Michel (2011). Metodologia da Pesquisa-Ação. São Paulo: Cortez.
Vergnaud, G. (1996). A teoria dos campos conceptuais. In: Jean Brun (Ed.) Didáctica das Matemáticas. Lisboa: Instituto Piaget.
Wiggins, G., & McTIGHE, J. (2019). Planejamento para a Compreensão-: Alinhando Currículo, Avaliação e Ensino por Meio da Prática do Planejamento Reverso. Penso Editora.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Roberta dos Santos Rodrigues; Ana Beatriz Pinheiro Lira; Ewerly Reis Conceição; Kassio Kevy Alves de Souza; Thamillie Ketelen da Costa; Francisco Eteval da Silva Feitosa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.