Comparison between antineoplastic treatments with selective inhibitors (BRAF/MEK) and the new potentials combinatorial therapies for metastatic melanoma
DOI:
https://doi.org/10.33448/rsd-v11i14.36275Keywords:
Melanoma; Immunotherapy; Drug therapy; Quality of life; BRAF Kinase; MEK.Abstract
Melanoma is responsible for most skin cancer related mortalities, and its best prognosis is related to early diagnosis and treatment. In this sense much has been studied about the treatment of the disease, relating mainly to selective inhibitors of signaling pathways. Therefore, the present review addresses the use of monotherapies of BRAF (vemurafenib and dabrafenib) and MEK (trametinib) inhibitors, the possible combinations between them and other therapeutic options that may be promising to participate on the neoadjuvant and adjuvant treatment with the selective inhibitors, since the main limitations in treatment with these inhibitors is the frequent development of drug resistance mechanisms. In order to obtain the necessary content, a bibliographic review was carried out in the following databases of the Virtual Health Library, PubMed, Scielo and Google Academic, using the following keywords: melanoma, BRAF and MEK inhibitors, dabrafenib monotherapy and vemurafenib, dabrafenib and trametinib combinations, protein disulfide isomerase action, immunotherapy in the treatment of metastatic melanoma. After the information survey it was possible to conclude that dabrafenib + trametinib combination therapy is more advantageous in view of the adverse effects, quality of life and progression free survival of the patient when compared directly to selective chemotherapy monotherapies, and this may be considered for future studies that include, for example, combination with immunotherapy or quercetin, a potential natural inhibitor for PDI.
References
Araujo, T. L. S., Zeidler, J. D., Oliveira, P. V. S., Dias, M. H., Armelin, H. A., & Laurindo, F. R. M. (2017). Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radical Biology and Medicine, 103, 199–208. https://doi.org/10.1016/j.freeradbiomed.2016.12.021
Aydin, E., Johansson, J., Nazir, F. H., Hellstrand, K., & Martner, A. (2017). Role of NOX2-Derived Reactive Oxygen Species in NK Cell–Mediated Control of Murine Melanoma Metastasis. Cancer Immunology Research, 5(9), 804–811. https://doi.org/10.1158/2326-6066.CIR-16-0382
Brandes, N., Schmitt, S., & Jakob, U. (2009). Thiol-Based Redox Switches in Eukaryotic Proteins. Antioxidants & Redox Signaling, 11(5), 997–1014. https://doi.org/10.1089/ars.2008.2285
Câmara de Regulação do Mercado de Medicamentos. (2022). Preços Máximos de Medicamentos por Princípio ativo. Retrieved August 01, 2022 from https://www.gov.br/anvisa/pt-br/assuntos/medicamentos/cmed/precos
Cellone Trevelin, S., & Rossetti Lopes, L. (2015). Protein disulfide isomerase and Nox: new partners in redox signaling. Current Pharmaceutical Design, 21(41), 5951–5963.
Cesi, G., Walbrecq, G., Zimmer, A., Kreis, S., & Haan, C. (2017). ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Molecular Cancer, 16(1). https://doi.org/10.1186/s12943-017-0667-y
Comissão Nacional de Incorporação de Tecnologias no SUS. (2020). Terapia-alvo (Vemurafenibe, Dabrafenibe, Cobimetinibe, Trametinibe) e Imunoterapia (Ipilimumabe, Nivolumabe, Pembrolizumabe) para o Tratamento de Primeira Linha do Melanoma Avançado não-cirúrgico e Metastático. https://www.gov.br/conitec/pt-br/midias/relatorios/2020/relatorio_541_terapiaalvo_melanoma_final_2020.pdf
Czarnecka, A. M., Ostaszewski, K., Borkowska, A., Szumera-Ciećkiewicz, A., Kozak, K., Świtaj, T., Rogala, P., Kalinowska, I., Koseła-Paterczyk, H., Zaborowski, K., Teterycz, P., Tysarowski, A., Makuła, D., & Rutkowski, P. (2021). Efficacy of Neoadjuvant Targeted Therapy for Borderline Resectable III B-D or IV Stage BRAF V600 Mutation-Positive Melanoma. Cancers, 14(1), 110. https://doi.org/10.3390/cancers14010110
Damsky, W. E., Rosenbaum, L. E., & Bosenberg, M. (2010). Decoding Melanoma Metastasis. Cancers, 3(1), 126–163. https://doi.org/10.3390/cancers3010126
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., … Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. In Nature (Vol. 417, Issue 6892, pp. 949–954). https://doi.org/10.1111/ced.12015
Duggan, M. C., Stiff, A. R., Bainazar, M., Regan, K., Olaverria Salavaggione, G. N., Maharry, S., Blachly, J. S., Krischak, M., Walker, C. J., Latchana, N., Tridandapani, S., de La Chapelle, A., Eisfeld, A. K., & Carson, W. E. (2017). Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9629–9634. https://doi.org/10.1073/pnas.1704371114
Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458. https://doi.org/10.1038/nrc1098
Galvão, M. C. B., & Ricarte, I. L. M. (2019). Revisão sistemática da literatura: conceituação, produção e publicação. Logeion: Filosofia Da Informação, 6(1), 57–73. https://doi.org/10.21728/logeion.2019v6n1.p57-73
Goplen, D., Wang, J., Enger, P. Ø., Tysnes, B. B., Terzis, A. J. A., Laerum, O. D., & Bjerkvig, R. (2006). Protein Disulfide Isomerase Expression Is Related to the Invasive Properties of Malignant Glioma. Cancer Research, 66(20), 9895–9902. https://doi.org/10.1158/0008-5472.CAN-05-4589
Halmos, B., Burke, T., Kalyvas, C., Insinga, R., Vandormael, K., Frederickson, A., & Piperdi, B. (2022). Indirect comparison of pembrolizumab monotherapy versus nivolumab + ipilimumab in first-line metastatic lung cancer. Immunotherapy, 14(5), 295–307. https://doi.org/10.2217/imt-2021-0273
Hauschild, A., Grob, J. J., Demidov, L. v., Jouary, T., Gutzmer, R., Millward, M., Rutkowski, P., Blank, C. U., Miller, W. H., Kaempgen, E., Martín-Algarra, S., Karaszewska, B., Mauch, C., Chiarion-Sileni, V., Martin, A. M., Swann, S., Haney, P., Mirakhur, B., Guckert, M. E., … Chapman, P. B. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. The Lancet, 380(9839), 358–365. https://doi.org/10.1016/S0140-6736(12)60868-X
Hughes, T., Klairmont, M., Sharfman, W. H., & Kaufman, H. L. (2021). Interleukin-2, Ipilimumab, and Anti-PD-1: clinical management and the evolving role of immunotherapy for the treatment of patients with metastatic melanoma. Cancer Biology & Therapy, 22(10–12), 513–526. https://doi.org/10.1080/15384047.2015.1095401
Instituto Nacional de Câncer José Alencar Gomes da Silva. (2019). Estimativa 2020 - Incidência de Câncer no Brasil. http://www.inca.gov.br
Kramkimel, N., Thomas-Schoemann, A., Sakji, L., Golmard, J. L., Noe, G., Regnier-Rosencher, E., Chapuis, N., Maubec, E., Vidal, M., Avril, M. F., Goldwasser, F., Mortier, L., Dupin, N., & Blanchet, B. (2016). Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Targeted Oncology, 11(1), 59–69. https://doi.org/10.1007/s11523-015-0375-8
Lee, E., & Lee, D. H. (2017). Emerging roles of protein disulfide isomerase in cancer. In BMB Reports (Vol. 50, Issue 8, pp. 401–410). The Biochemical Society of the Republic of Korea. https://doi.org/10.5483/BMBRep.2017.50.8.107
Lidsky, M., Antoun, G., Speicher, P., Adams, B., Turley, R., Augustine, C., Tyler, D., & Ali-Osman, F. (2014). Mitogen-activated Protein Kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. Journal of Biological Chemistry, 289(40), 27714–27726. https://doi.org/10.1074/jbc.M113.532432
Lin, L., Gopal, S., Sharda, A., Passam, F., Bowley, S. R., Stopa, J., Xue, G., Yuan, C., Furie, B. C., Flaumenhaft, R., Huang, M., & Furie, B. (2015). Quercetin-3-rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b′x Domain. Journal of Biological Chemistry, 290(39), 23543–23552. https://doi.org/10.1074/jbc.M115.666180
Liu, Y., & Sheikh, M. S. (2015). Melanoma: Molecular Pathogenesis and Therapeutic Management. Molecular and Cellular Pharmacology, 6(3), 228. http://www.ncbi.nlm.nih.gov/pubmed/25745537
Liu-Smith, F., Dellinger, R., & Meyskens, F. L. (2014). Updates of reactive oxygen species in melanoma etiology and progression. Archives of Biochemistry and Biophysics, 563, 51–55. https://doi.org/10.1016/j.abb.2014.04.007
Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., & Scott, M. P. (2014). Biologia Celular e molecular (S. de Fraga, Ed.; 7th ed.). Artmed.
Long, G. v, Atkinson, V., Cebon, J. S., Jameson, M. B., Fitzharris, B. M., McNeil, C. M., Hill, A. G., Ribas, A., Atkins, M. B., Thompson, J. A., Hwu, W.-J., Hodi, F. S., Menzies, A. M., Guminski, A. D., Kefford, R., Kong, B. Y., Tamjid, B., Srivastava, A., Lomax, A. J., … Carlino, M. S. (2017). Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. The Lancet Oncology, 18(9), 1202–1210. https://doi.org/10.1016/S1470-2045(17)30428-X
Long, G. v., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., Garbe, C., Jouary, T., Hauschild, A., Grob, J. J., Chiarion-Sileni, V., Lebbe, C., Mandalà, M., Millward, M., Arance, A., Bondarenko, I., Haanen, J. B. A. G., Hansson, J., Utikal, J., … Flaherty, K. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. The Lancet, 386(9992), 444–451. https://doi.org/10.1016/S0140-6736(15)60898-4
Lovat, P. E., Corazzari, M., Armstrong, J. L., Martin, S., Pagliarini, V., Hill, D., Brown, A. M., Piacentini, M., Birch-Machin, M. A., & Redfern, C. P. F. (2008). Increasing Melanoma Cell Death Using Inhibitors of Protein Disulfide Isomerases to Abrogate Survival Responses to Endoplasmic Reticulum Stress. Cancer Research, 68(13), 5363–5369. https://doi.org/10.1158/0008-5472.CAN-08-0035
Luebker, S. A., & Koepsell, S. A. (2019). Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical Studies. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00268
Lugowska, I., Koseła-Paterczyk, H., Kozak, K., & Rutkowski, P. (2015). Trametinib: A MEK inhibitor for management of metastatic melanoma. In OncoTargets and Therapy (Vol. 8, pp. 2251–2259). Dove Medical Press Ltd. https://doi.org/10.2147/OTT.S72951
Massi, A., Bortolini, O., Ragno, D., Bernardi, T., Sacchetti, G., Tacchini, M., & de Risi, C. (2017). Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules, 22(8), 1270. https://doi.org/10.3390/molecules22081270
Menzies, A. M., Long, G. v., & Murali, R. (2012). Dabrafenib and its potential for the treatment of metastatic melanoma. In Drug Design, Development and Therapy (Vol. 6, pp. 391–405). https://doi.org/10.2147/DDDT.S38998
Meyle, K. D., & Guldberg, P. (2009). Genetic risk factors for melanoma. In Human Genetics (Vol. 126, Issue 4, pp. 499–510). https://doi.org/10.1007/s00439-009-0715-9
Miller, A. J., & Mihm, M. C. (2006). Melanoma. New England Journal of Medicine, 355(1), 51–65. https://doi.org/10.1056/NEJMra052166
National Center for Biotechnology Information. (2022a). PubChem Compound Summary for CID 11707110, Trametinib. National Center for Biotechnology Information. Retrieved August 20, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/trametinib
National Center for Biotechnology Information. (2022b). PubChem Compound Summary for CID 42611257, Vemurafenib. National Center for Biotechnology Information. Retrieved July 25, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Vemurafenib
National Center for Biotechnology Information. (2022c). PubChem Compound Summary for CID 44462760, Dabrafenib. National Center for Biotechnology Information. Retrieved August 20, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/dabrafenib
Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A., & Lo, R. S. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977. https://doi.org/10.1038/nature09626
Pescatore-Alves, L. (2012). Papel da dissulfeto isomerase proteica (PDI) na migração de células musculares lisas vasculares: possível envolvimento de Nox1 NADPH oxidase e RhoGTPases [Tese de Doutorado, Universidade de São Paulo]. https://doi.org/10.11606/T.5.2012.tde-25042012-165242
Queirolo, P., Boutros, A., Tanda, E., Spagnolo, F., & Quaglino, P. (2019). Immune-checkpoint inhibitors for the treatment of metastatic melanoma: a model of cancer immunotherapy. Seminars in Cancer Biology, 59, 290–297. https://doi.org/10.1016/j.semcancer.2019.08.001
Ribas, A., Lawrence, D., Atkinson, V., Agarwal, S., Miller, W. H., Carlino, M. S., Fisher, R., Long, G. v., Hodi, F. S., Tsoi, J., Grasso, C. S., Mookerjee, B., Zhao, Q., Ghori, R., Moreno, B. H., Ibrahim, N., & Hamid, O. (2019). Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nature Medicine, 25(6), 936–940. https://doi.org/10.1038/s41591-019-0476-5
Sale, M. J., & Cook, S. J. (2013). That which does not kill me makes me stronger; Combining ERK1/2 pathway inhibitors and BH3 mimetics to kill tumour cells and prevent acquired resistance. In British Journal of Pharmacology (Vol. 169, Issue 8, pp. 1708–1722). https://doi.org/10.1111/bph.12220
Shi, H., Kong, X., Ribas, A., & Lo, R. S. (2011). Combinatorial Treatments That Overcome PDGFRβ-Driven Resistance of Melanoma Cells to V600EB-RAF Inhibition. Cancer Research, 71(15), 5067–5074. https://doi.org/10.1158/0008-5472.CAN-11-0140
Sirokmány, G., Donkó, Á., & Geiszt, M. (2016). Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends in Pharmacological Sciences, 37(4), 318–327. https://doi.org/10.1016/j.tips.2016.01.006
Soares Moretti, A. I., & Martins Laurindo, F. R. (2017). Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Archives of Biochemistry and Biophysics, 617, 106–119. https://doi.org/10.1016/j.abb.2016.11.007
Sobierajska, K., Skurzynski, S., Stasiak, M., Kryczka, J., Cierniewski, C. S., & Swiatkowska, M. (2014). Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization. Journal of Biological Chemistry, 289(9), 5758–5773. https://doi.org/10.1074/jbc.M113.479477
Sun, C., Wang, L., Huang, S., Heynen, G. J. J. E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S. M., Zecchin, D., Hobor, S., Bajpe, P. K., Lieftink, C., Mateus, C., Vagner, S., Grernrum, W., Hofland, I., Schlicker, A., … Bernards, R. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(1), 118–122. https://doi.org/10.1038/nature13121
Thota, R., Johnson, D. B., & Sosman, J. A. (2015). Trametinib in the treatment of melanoma. Expert Opinion on Biological Therapy, 15(5), 735–747. https://doi.org/10.1517/14712598.2015.1026323
Wan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Project, C. G., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., & Marais, R. (2004). Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 116(6), 855–867. https://doi.org/10.1016/S0092-8674(04)00215-6
Winterbourn, C. C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4(5), 278–286. https://doi.org/10.1038/nchembio.85
Xu, S., Sankar, S., & Neamati, N. (2014). Protein disulfide isomerase: A promising target for cancer therapy. In Drug Discovery Today (Vol. 19, Issue 3, pp. 222–240). Elsevier Ltd. https://doi.org/10.1016/j.drudis.2013.10.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Beatriz Toledo Dal'Ava; Natali Figueiredo de Souza; Thays dos Santos Chagas; Gustavo José Vasco Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.