Comparación entre los tratamientos antineoplásicos con inhibidores selectivos (BRAF/MEK) y las nuevas potenciales terapias combinatorias para el melanoma metastásico
DOI:
https://doi.org/10.33448/rsd-v11i14.36275Palabras clave:
Melanoma; Inmunoterapia; Farmacoterapia; Calidad de vida; BRAF Quinasa; MEK.Resumen
El melanoma es responsable de la mayoría de las muertes relacionadas con el cáncer de piel, y su mejor pronóstico está relacionado con el diagnóstico y tratamiento temprano. En este sentido, el tratamiento para esta enfermedad ha sido muy estudiado, principalmente relacionado con inhibidores selectivos de las vías de señalización celular. Así, la presente revisión aborda el uso de monoterapias de inhibidores BRAF (vemurafenib y dabrafenib) y MEK (trametinib), las posibles combinaciones entre ellos, así como otras opciones terapéuticas que pueden ser prometedoras para entrar en tratamiento adyuvante y coadyuvante de estos inhibidores selectivos, ya que las principales limitaciones en el tratamiento con estos inhibidores es el desarrollo frecuente de mecanismos de resistencia a fármacos. Con el fin de reunir el contenido necesario, fue realizada una revisión bibliográfica en las siguientes bases de datos de la Biblioteca Virtual en Salud, PubMed, Scielo y Google Academic, utilizando las siguientes palabras clave: melanoma, inhibidores BRAF y MEK, combinaciones dabrafenib en monoterapia y vemurafenib, dabrafenib y trametinib, acción disulfuro isomerasa, inmunoterapia en el tratamiento de melanoma metastásico. Después de análises de la información fue possible concluir que la terapia combinada de dabrafenib + trametinib es más ventajosa en vista de los efectos adversos, la calidad de vida y la supervivencia libre de progresión del paciente cuando se compara directamente con las monoterapias de quimioterapia selectiva, con lo cual esta puede ser considerada en estudios futuros que incluyan, por ejemplo, la combinación con inmunoterapia o quercetina, un inhibidor natural potencial de la PDI.
Citas
Araujo, T. L. S., Zeidler, J. D., Oliveira, P. V. S., Dias, M. H., Armelin, H. A., & Laurindo, F. R. M. (2017). Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radical Biology and Medicine, 103, 199–208. https://doi.org/10.1016/j.freeradbiomed.2016.12.021
Aydin, E., Johansson, J., Nazir, F. H., Hellstrand, K., & Martner, A. (2017). Role of NOX2-Derived Reactive Oxygen Species in NK Cell–Mediated Control of Murine Melanoma Metastasis. Cancer Immunology Research, 5(9), 804–811. https://doi.org/10.1158/2326-6066.CIR-16-0382
Brandes, N., Schmitt, S., & Jakob, U. (2009). Thiol-Based Redox Switches in Eukaryotic Proteins. Antioxidants & Redox Signaling, 11(5), 997–1014. https://doi.org/10.1089/ars.2008.2285
Câmara de Regulação do Mercado de Medicamentos. (2022). Preços Máximos de Medicamentos por Princípio ativo. Retrieved August 01, 2022 from https://www.gov.br/anvisa/pt-br/assuntos/medicamentos/cmed/precos
Cellone Trevelin, S., & Rossetti Lopes, L. (2015). Protein disulfide isomerase and Nox: new partners in redox signaling. Current Pharmaceutical Design, 21(41), 5951–5963.
Cesi, G., Walbrecq, G., Zimmer, A., Kreis, S., & Haan, C. (2017). ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Molecular Cancer, 16(1). https://doi.org/10.1186/s12943-017-0667-y
Comissão Nacional de Incorporação de Tecnologias no SUS. (2020). Terapia-alvo (Vemurafenibe, Dabrafenibe, Cobimetinibe, Trametinibe) e Imunoterapia (Ipilimumabe, Nivolumabe, Pembrolizumabe) para o Tratamento de Primeira Linha do Melanoma Avançado não-cirúrgico e Metastático. https://www.gov.br/conitec/pt-br/midias/relatorios/2020/relatorio_541_terapiaalvo_melanoma_final_2020.pdf
Czarnecka, A. M., Ostaszewski, K., Borkowska, A., Szumera-Ciećkiewicz, A., Kozak, K., Świtaj, T., Rogala, P., Kalinowska, I., Koseła-Paterczyk, H., Zaborowski, K., Teterycz, P., Tysarowski, A., Makuła, D., & Rutkowski, P. (2021). Efficacy of Neoadjuvant Targeted Therapy for Borderline Resectable III B-D or IV Stage BRAF V600 Mutation-Positive Melanoma. Cancers, 14(1), 110. https://doi.org/10.3390/cancers14010110
Damsky, W. E., Rosenbaum, L. E., & Bosenberg, M. (2010). Decoding Melanoma Metastasis. Cancers, 3(1), 126–163. https://doi.org/10.3390/cancers3010126
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., … Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. In Nature (Vol. 417, Issue 6892, pp. 949–954). https://doi.org/10.1111/ced.12015
Duggan, M. C., Stiff, A. R., Bainazar, M., Regan, K., Olaverria Salavaggione, G. N., Maharry, S., Blachly, J. S., Krischak, M., Walker, C. J., Latchana, N., Tridandapani, S., de La Chapelle, A., Eisfeld, A. K., & Carson, W. E. (2017). Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9629–9634. https://doi.org/10.1073/pnas.1704371114
Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458. https://doi.org/10.1038/nrc1098
Galvão, M. C. B., & Ricarte, I. L. M. (2019). Revisão sistemática da literatura: conceituação, produção e publicação. Logeion: Filosofia Da Informação, 6(1), 57–73. https://doi.org/10.21728/logeion.2019v6n1.p57-73
Goplen, D., Wang, J., Enger, P. Ø., Tysnes, B. B., Terzis, A. J. A., Laerum, O. D., & Bjerkvig, R. (2006). Protein Disulfide Isomerase Expression Is Related to the Invasive Properties of Malignant Glioma. Cancer Research, 66(20), 9895–9902. https://doi.org/10.1158/0008-5472.CAN-05-4589
Halmos, B., Burke, T., Kalyvas, C., Insinga, R., Vandormael, K., Frederickson, A., & Piperdi, B. (2022). Indirect comparison of pembrolizumab monotherapy versus nivolumab + ipilimumab in first-line metastatic lung cancer. Immunotherapy, 14(5), 295–307. https://doi.org/10.2217/imt-2021-0273
Hauschild, A., Grob, J. J., Demidov, L. v., Jouary, T., Gutzmer, R., Millward, M., Rutkowski, P., Blank, C. U., Miller, W. H., Kaempgen, E., Martín-Algarra, S., Karaszewska, B., Mauch, C., Chiarion-Sileni, V., Martin, A. M., Swann, S., Haney, P., Mirakhur, B., Guckert, M. E., … Chapman, P. B. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. The Lancet, 380(9839), 358–365. https://doi.org/10.1016/S0140-6736(12)60868-X
Hughes, T., Klairmont, M., Sharfman, W. H., & Kaufman, H. L. (2021). Interleukin-2, Ipilimumab, and Anti-PD-1: clinical management and the evolving role of immunotherapy for the treatment of patients with metastatic melanoma. Cancer Biology & Therapy, 22(10–12), 513–526. https://doi.org/10.1080/15384047.2015.1095401
Instituto Nacional de Câncer José Alencar Gomes da Silva. (2019). Estimativa 2020 - Incidência de Câncer no Brasil. http://www.inca.gov.br
Kramkimel, N., Thomas-Schoemann, A., Sakji, L., Golmard, J. L., Noe, G., Regnier-Rosencher, E., Chapuis, N., Maubec, E., Vidal, M., Avril, M. F., Goldwasser, F., Mortier, L., Dupin, N., & Blanchet, B. (2016). Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Targeted Oncology, 11(1), 59–69. https://doi.org/10.1007/s11523-015-0375-8
Lee, E., & Lee, D. H. (2017). Emerging roles of protein disulfide isomerase in cancer. In BMB Reports (Vol. 50, Issue 8, pp. 401–410). The Biochemical Society of the Republic of Korea. https://doi.org/10.5483/BMBRep.2017.50.8.107
Lidsky, M., Antoun, G., Speicher, P., Adams, B., Turley, R., Augustine, C., Tyler, D., & Ali-Osman, F. (2014). Mitogen-activated Protein Kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. Journal of Biological Chemistry, 289(40), 27714–27726. https://doi.org/10.1074/jbc.M113.532432
Lin, L., Gopal, S., Sharda, A., Passam, F., Bowley, S. R., Stopa, J., Xue, G., Yuan, C., Furie, B. C., Flaumenhaft, R., Huang, M., & Furie, B. (2015). Quercetin-3-rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b′x Domain. Journal of Biological Chemistry, 290(39), 23543–23552. https://doi.org/10.1074/jbc.M115.666180
Liu, Y., & Sheikh, M. S. (2015). Melanoma: Molecular Pathogenesis and Therapeutic Management. Molecular and Cellular Pharmacology, 6(3), 228. http://www.ncbi.nlm.nih.gov/pubmed/25745537
Liu-Smith, F., Dellinger, R., & Meyskens, F. L. (2014). Updates of reactive oxygen species in melanoma etiology and progression. Archives of Biochemistry and Biophysics, 563, 51–55. https://doi.org/10.1016/j.abb.2014.04.007
Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., & Scott, M. P. (2014). Biologia Celular e molecular (S. de Fraga, Ed.; 7th ed.). Artmed.
Long, G. v, Atkinson, V., Cebon, J. S., Jameson, M. B., Fitzharris, B. M., McNeil, C. M., Hill, A. G., Ribas, A., Atkins, M. B., Thompson, J. A., Hwu, W.-J., Hodi, F. S., Menzies, A. M., Guminski, A. D., Kefford, R., Kong, B. Y., Tamjid, B., Srivastava, A., Lomax, A. J., … Carlino, M. S. (2017). Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. The Lancet Oncology, 18(9), 1202–1210. https://doi.org/10.1016/S1470-2045(17)30428-X
Long, G. v., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., Garbe, C., Jouary, T., Hauschild, A., Grob, J. J., Chiarion-Sileni, V., Lebbe, C., Mandalà, M., Millward, M., Arance, A., Bondarenko, I., Haanen, J. B. A. G., Hansson, J., Utikal, J., … Flaherty, K. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. The Lancet, 386(9992), 444–451. https://doi.org/10.1016/S0140-6736(15)60898-4
Lovat, P. E., Corazzari, M., Armstrong, J. L., Martin, S., Pagliarini, V., Hill, D., Brown, A. M., Piacentini, M., Birch-Machin, M. A., & Redfern, C. P. F. (2008). Increasing Melanoma Cell Death Using Inhibitors of Protein Disulfide Isomerases to Abrogate Survival Responses to Endoplasmic Reticulum Stress. Cancer Research, 68(13), 5363–5369. https://doi.org/10.1158/0008-5472.CAN-08-0035
Luebker, S. A., & Koepsell, S. A. (2019). Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical Studies. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00268
Lugowska, I., Koseła-Paterczyk, H., Kozak, K., & Rutkowski, P. (2015). Trametinib: A MEK inhibitor for management of metastatic melanoma. In OncoTargets and Therapy (Vol. 8, pp. 2251–2259). Dove Medical Press Ltd. https://doi.org/10.2147/OTT.S72951
Massi, A., Bortolini, O., Ragno, D., Bernardi, T., Sacchetti, G., Tacchini, M., & de Risi, C. (2017). Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules, 22(8), 1270. https://doi.org/10.3390/molecules22081270
Menzies, A. M., Long, G. v., & Murali, R. (2012). Dabrafenib and its potential for the treatment of metastatic melanoma. In Drug Design, Development and Therapy (Vol. 6, pp. 391–405). https://doi.org/10.2147/DDDT.S38998
Meyle, K. D., & Guldberg, P. (2009). Genetic risk factors for melanoma. In Human Genetics (Vol. 126, Issue 4, pp. 499–510). https://doi.org/10.1007/s00439-009-0715-9
Miller, A. J., & Mihm, M. C. (2006). Melanoma. New England Journal of Medicine, 355(1), 51–65. https://doi.org/10.1056/NEJMra052166
National Center for Biotechnology Information. (2022a). PubChem Compound Summary for CID 11707110, Trametinib. National Center for Biotechnology Information. Retrieved August 20, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/trametinib
National Center for Biotechnology Information. (2022b). PubChem Compound Summary for CID 42611257, Vemurafenib. National Center for Biotechnology Information. Retrieved July 25, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Vemurafenib
National Center for Biotechnology Information. (2022c). PubChem Compound Summary for CID 44462760, Dabrafenib. National Center for Biotechnology Information. Retrieved August 20, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/dabrafenib
Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A., & Lo, R. S. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977. https://doi.org/10.1038/nature09626
Pescatore-Alves, L. (2012). Papel da dissulfeto isomerase proteica (PDI) na migração de células musculares lisas vasculares: possível envolvimento de Nox1 NADPH oxidase e RhoGTPases [Tese de Doutorado, Universidade de São Paulo]. https://doi.org/10.11606/T.5.2012.tde-25042012-165242
Queirolo, P., Boutros, A., Tanda, E., Spagnolo, F., & Quaglino, P. (2019). Immune-checkpoint inhibitors for the treatment of metastatic melanoma: a model of cancer immunotherapy. Seminars in Cancer Biology, 59, 290–297. https://doi.org/10.1016/j.semcancer.2019.08.001
Ribas, A., Lawrence, D., Atkinson, V., Agarwal, S., Miller, W. H., Carlino, M. S., Fisher, R., Long, G. v., Hodi, F. S., Tsoi, J., Grasso, C. S., Mookerjee, B., Zhao, Q., Ghori, R., Moreno, B. H., Ibrahim, N., & Hamid, O. (2019). Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nature Medicine, 25(6), 936–940. https://doi.org/10.1038/s41591-019-0476-5
Sale, M. J., & Cook, S. J. (2013). That which does not kill me makes me stronger; Combining ERK1/2 pathway inhibitors and BH3 mimetics to kill tumour cells and prevent acquired resistance. In British Journal of Pharmacology (Vol. 169, Issue 8, pp. 1708–1722). https://doi.org/10.1111/bph.12220
Shi, H., Kong, X., Ribas, A., & Lo, R. S. (2011). Combinatorial Treatments That Overcome PDGFRβ-Driven Resistance of Melanoma Cells to V600EB-RAF Inhibition. Cancer Research, 71(15), 5067–5074. https://doi.org/10.1158/0008-5472.CAN-11-0140
Sirokmány, G., Donkó, Á., & Geiszt, M. (2016). Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends in Pharmacological Sciences, 37(4), 318–327. https://doi.org/10.1016/j.tips.2016.01.006
Soares Moretti, A. I., & Martins Laurindo, F. R. (2017). Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Archives of Biochemistry and Biophysics, 617, 106–119. https://doi.org/10.1016/j.abb.2016.11.007
Sobierajska, K., Skurzynski, S., Stasiak, M., Kryczka, J., Cierniewski, C. S., & Swiatkowska, M. (2014). Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization. Journal of Biological Chemistry, 289(9), 5758–5773. https://doi.org/10.1074/jbc.M113.479477
Sun, C., Wang, L., Huang, S., Heynen, G. J. J. E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S. M., Zecchin, D., Hobor, S., Bajpe, P. K., Lieftink, C., Mateus, C., Vagner, S., Grernrum, W., Hofland, I., Schlicker, A., … Bernards, R. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(1), 118–122. https://doi.org/10.1038/nature13121
Thota, R., Johnson, D. B., & Sosman, J. A. (2015). Trametinib in the treatment of melanoma. Expert Opinion on Biological Therapy, 15(5), 735–747. https://doi.org/10.1517/14712598.2015.1026323
Wan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Project, C. G., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., & Marais, R. (2004). Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 116(6), 855–867. https://doi.org/10.1016/S0092-8674(04)00215-6
Winterbourn, C. C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4(5), 278–286. https://doi.org/10.1038/nchembio.85
Xu, S., Sankar, S., & Neamati, N. (2014). Protein disulfide isomerase: A promising target for cancer therapy. In Drug Discovery Today (Vol. 19, Issue 3, pp. 222–240). Elsevier Ltd. https://doi.org/10.1016/j.drudis.2013.10.017
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Beatriz Toledo Dal'Ava; Natali Figueiredo de Souza; Thays dos Santos Chagas; Gustavo José Vasco Pereira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.