Comparativo entre tratamentos antineoplásicos com inibidores seletivos (BRAF/ MEK) e as novas potenciais terapias combinatórias para melanoma metastático

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36275

Palavras-chave:

Melanoma; Imunoterapia; Farmacoterapia; Farmacoeconomia; Qualidade de vida; BRAF Quinase; MEK.

Resumo

O melanoma é responsável pela maioria das mortalidades relacionadas ao câncer de pele, e, seu melhor prognóstico se relaciona ao diagnóstico e tratamento precoce. Nesse sentindo muito se tem estudado sobre o tratamento da doença, relacionando principalmente os inibidores seletivos de vias de sinalização celular. Assim, a presente revisão objetiva discorrer sobre o uso das monoterapias de inibidores de BRAF (vemurafenibe e dabrafenibe) e MEK (trametinibe), as possíveis combinações entre eles e outras opções terapêuticas que podem promissoramente entrar no tratamento neoadjuvante e adjuvante em conjunto a estes inibidores seletivos, visto que as principais limitações no tratamento com estes é o desenvolvimento frequente de resistências ao mecanismo dos fármacos. A fim de obter o conteúdo necessário, foi realizada revisão bibliográfica nas bases da Biblioteca Virtual de Saúde, PubMed, Scielo e Google Acadêmico, utilizando as seguintes palavras chaves: melanoma, inibidores de BRAF e MEK, monoterapia do dabrafenibe e vemurafenibe, combinações de dabrafenibe e trametinibe, ação da proteína dissulfeto isomerase, imunoterapia no tratamento do melanoma metastático. Após o levantamento das informações foi possível concluir que a terapia combinada de dabrafenibe + trametinibe se mostra mais vantajosa frente aos efeitos adversos, qualidade de vida e sobrevida livre de progressão do paciente, quando comparado diretamente com as monoterapias quimioterápicas seletivas, podendo esta ser considerada para futuros estudos que englobam, por exemplo, a associação com imunoterapia ou a quercetina, um potencial inibidor natural para PDI.

Referências

Araujo, T. L. S., Zeidler, J. D., Oliveira, P. V. S., Dias, M. H., Armelin, H. A., & Laurindo, F. R. M. (2017). Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radical Biology and Medicine, 103, 199–208. https://doi.org/10.1016/j.freeradbiomed.2016.12.021

Aydin, E., Johansson, J., Nazir, F. H., Hellstrand, K., & Martner, A. (2017). Role of NOX2-Derived Reactive Oxygen Species in NK Cell–Mediated Control of Murine Melanoma Metastasis. Cancer Immunology Research, 5(9), 804–811. https://doi.org/10.1158/2326-6066.CIR-16-0382

Brandes, N., Schmitt, S., & Jakob, U. (2009). Thiol-Based Redox Switches in Eukaryotic Proteins. Antioxidants & Redox Signaling, 11(5), 997–1014. https://doi.org/10.1089/ars.2008.2285

Câmara de Regulação do Mercado de Medicamentos. (2022). Preços Máximos de Medicamentos por Princípio ativo. Retrieved August 01, 2022 from https://www.gov.br/anvisa/pt-br/assuntos/medicamentos/cmed/precos

Cellone Trevelin, S., & Rossetti Lopes, L. (2015). Protein disulfide isomerase and Nox: new partners in redox signaling. Current Pharmaceutical Design, 21(41), 5951–5963.

Cesi, G., Walbrecq, G., Zimmer, A., Kreis, S., & Haan, C. (2017). ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Molecular Cancer, 16(1). https://doi.org/10.1186/s12943-017-0667-y

Comissão Nacional de Incorporação de Tecnologias no SUS. (2020). Terapia-alvo (Vemurafenibe, Dabrafenibe, Cobimetinibe, Trametinibe) e Imunoterapia (Ipilimumabe, Nivolumabe, Pembrolizumabe) para o Tratamento de Primeira Linha do Melanoma Avançado não-cirúrgico e Metastático. https://www.gov.br/conitec/pt-br/midias/relatorios/2020/relatorio_541_terapiaalvo_melanoma_final_2020.pdf

Czarnecka, A. M., Ostaszewski, K., Borkowska, A., Szumera-Ciećkiewicz, A., Kozak, K., Świtaj, T., Rogala, P., Kalinowska, I., Koseła-Paterczyk, H., Zaborowski, K., Teterycz, P., Tysarowski, A., Makuła, D., & Rutkowski, P. (2021). Efficacy of Neoadjuvant Targeted Therapy for Borderline Resectable III B-D or IV Stage BRAF V600 Mutation-Positive Melanoma. Cancers, 14(1), 110. https://doi.org/10.3390/cancers14010110

Damsky, W. E., Rosenbaum, L. E., & Bosenberg, M. (2010). Decoding Melanoma Metastasis. Cancers, 3(1), 126–163. https://doi.org/10.3390/cancers3010126

Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., … Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. In Nature (Vol. 417, Issue 6892, pp. 949–954). https://doi.org/10.1111/ced.12015

Duggan, M. C., Stiff, A. R., Bainazar, M., Regan, K., Olaverria Salavaggione, G. N., Maharry, S., Blachly, J. S., Krischak, M., Walker, C. J., Latchana, N., Tridandapani, S., de La Chapelle, A., Eisfeld, A. K., & Carson, W. E. (2017). Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9629–9634. https://doi.org/10.1073/pnas.1704371114

Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458. https://doi.org/10.1038/nrc1098

Galvão, M. C. B., & Ricarte, I. L. M. (2019). Revisão sistemática da literatura: conceituação, produção e publicação. Logeion: Filosofia Da Informação, 6(1), 57–73. https://doi.org/10.21728/logeion.2019v6n1.p57-73

Goplen, D., Wang, J., Enger, P. Ø., Tysnes, B. B., Terzis, A. J. A., Laerum, O. D., & Bjerkvig, R. (2006). Protein Disulfide Isomerase Expression Is Related to the Invasive Properties of Malignant Glioma. Cancer Research, 66(20), 9895–9902. https://doi.org/10.1158/0008-5472.CAN-05-4589

Halmos, B., Burke, T., Kalyvas, C., Insinga, R., Vandormael, K., Frederickson, A., & Piperdi, B. (2022). Indirect comparison of pembrolizumab monotherapy versus nivolumab + ipilimumab in first-line metastatic lung cancer. Immunotherapy, 14(5), 295–307. https://doi.org/10.2217/imt-2021-0273

Hauschild, A., Grob, J. J., Demidov, L. v., Jouary, T., Gutzmer, R., Millward, M., Rutkowski, P., Blank, C. U., Miller, W. H., Kaempgen, E., Martín-Algarra, S., Karaszewska, B., Mauch, C., Chiarion-Sileni, V., Martin, A. M., Swann, S., Haney, P., Mirakhur, B., Guckert, M. E., … Chapman, P. B. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. The Lancet, 380(9839), 358–365. https://doi.org/10.1016/S0140-6736(12)60868-X

Hughes, T., Klairmont, M., Sharfman, W. H., & Kaufman, H. L. (2021). Interleukin-2, Ipilimumab, and Anti-PD-1: clinical management and the evolving role of immunotherapy for the treatment of patients with metastatic melanoma. Cancer Biology & Therapy, 22(10–12), 513–526. https://doi.org/10.1080/15384047.2015.1095401

Instituto Nacional de Câncer José Alencar Gomes da Silva. (2019). Estimativa 2020 - Incidência de Câncer no Brasil. http://www.inca.gov.br

Kramkimel, N., Thomas-Schoemann, A., Sakji, L., Golmard, J. L., Noe, G., Regnier-Rosencher, E., Chapuis, N., Maubec, E., Vidal, M., Avril, M. F., Goldwasser, F., Mortier, L., Dupin, N., & Blanchet, B. (2016). Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Targeted Oncology, 11(1), 59–69. https://doi.org/10.1007/s11523-015-0375-8

Lee, E., & Lee, D. H. (2017). Emerging roles of protein disulfide isomerase in cancer. In BMB Reports (Vol. 50, Issue 8, pp. 401–410). The Biochemical Society of the Republic of Korea. https://doi.org/10.5483/BMBRep.2017.50.8.107

Lidsky, M., Antoun, G., Speicher, P., Adams, B., Turley, R., Augustine, C., Tyler, D., & Ali-Osman, F. (2014). Mitogen-activated Protein Kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. Journal of Biological Chemistry, 289(40), 27714–27726. https://doi.org/10.1074/jbc.M113.532432

Lin, L., Gopal, S., Sharda, A., Passam, F., Bowley, S. R., Stopa, J., Xue, G., Yuan, C., Furie, B. C., Flaumenhaft, R., Huang, M., & Furie, B. (2015). Quercetin-3-rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b′x Domain. Journal of Biological Chemistry, 290(39), 23543–23552. https://doi.org/10.1074/jbc.M115.666180

Liu, Y., & Sheikh, M. S. (2015). Melanoma: Molecular Pathogenesis and Therapeutic Management. Molecular and Cellular Pharmacology, 6(3), 228. http://www.ncbi.nlm.nih.gov/pubmed/25745537

Liu-Smith, F., Dellinger, R., & Meyskens, F. L. (2014). Updates of reactive oxygen species in melanoma etiology and progression. Archives of Biochemistry and Biophysics, 563, 51–55. https://doi.org/10.1016/j.abb.2014.04.007

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., & Scott, M. P. (2014). Biologia Celular e molecular (S. de Fraga, Ed.; 7th ed.). Artmed.

Long, G. v, Atkinson, V., Cebon, J. S., Jameson, M. B., Fitzharris, B. M., McNeil, C. M., Hill, A. G., Ribas, A., Atkins, M. B., Thompson, J. A., Hwu, W.-J., Hodi, F. S., Menzies, A. M., Guminski, A. D., Kefford, R., Kong, B. Y., Tamjid, B., Srivastava, A., Lomax, A. J., … Carlino, M. S. (2017). Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. The Lancet Oncology, 18(9), 1202–1210. https://doi.org/10.1016/S1470-2045(17)30428-X

Long, G. v., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., Garbe, C., Jouary, T., Hauschild, A., Grob, J. J., Chiarion-Sileni, V., Lebbe, C., Mandalà, M., Millward, M., Arance, A., Bondarenko, I., Haanen, J. B. A. G., Hansson, J., Utikal, J., … Flaherty, K. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. The Lancet, 386(9992), 444–451. https://doi.org/10.1016/S0140-6736(15)60898-4

Lovat, P. E., Corazzari, M., Armstrong, J. L., Martin, S., Pagliarini, V., Hill, D., Brown, A. M., Piacentini, M., Birch-Machin, M. A., & Redfern, C. P. F. (2008). Increasing Melanoma Cell Death Using Inhibitors of Protein Disulfide Isomerases to Abrogate Survival Responses to Endoplasmic Reticulum Stress. Cancer Research, 68(13), 5363–5369. https://doi.org/10.1158/0008-5472.CAN-08-0035

Luebker, S. A., & Koepsell, S. A. (2019). Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical Studies. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00268

Lugowska, I., Koseła-Paterczyk, H., Kozak, K., & Rutkowski, P. (2015). Trametinib: A MEK inhibitor for management of metastatic melanoma. In OncoTargets and Therapy (Vol. 8, pp. 2251–2259). Dove Medical Press Ltd. https://doi.org/10.2147/OTT.S72951

Massi, A., Bortolini, O., Ragno, D., Bernardi, T., Sacchetti, G., Tacchini, M., & de Risi, C. (2017). Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules, 22(8), 1270. https://doi.org/10.3390/molecules22081270

Menzies, A. M., Long, G. v., & Murali, R. (2012). Dabrafenib and its potential for the treatment of metastatic melanoma. In Drug Design, Development and Therapy (Vol. 6, pp. 391–405). https://doi.org/10.2147/DDDT.S38998

Meyle, K. D., & Guldberg, P. (2009). Genetic risk factors for melanoma. In Human Genetics (Vol. 126, Issue 4, pp. 499–510). https://doi.org/10.1007/s00439-009-0715-9

Miller, A. J., & Mihm, M. C. (2006). Melanoma. New England Journal of Medicine, 355(1), 51–65. https://doi.org/10.1056/NEJMra052166

National Center for Biotechnology Information. (2022a). PubChem Compound Summary for CID 11707110, Trametinib. National Center for Biotechnology Information. Retrieved August 20, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/trametinib

National Center for Biotechnology Information. (2022b). PubChem Compound Summary for CID 42611257, Vemurafenib. National Center for Biotechnology Information. Retrieved July 25, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Vemurafenib

National Center for Biotechnology Information. (2022c). PubChem Compound Summary for CID 44462760, Dabrafenib. National Center for Biotechnology Information. Retrieved August 20, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/dabrafenib

Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A., & Lo, R. S. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977. https://doi.org/10.1038/nature09626

Pescatore-Alves, L. (2012). Papel da dissulfeto isomerase proteica (PDI) na migração de células musculares lisas vasculares: possível envolvimento de Nox1 NADPH oxidase e RhoGTPases [Tese de Doutorado, Universidade de São Paulo]. https://doi.org/10.11606/T.5.2012.tde-25042012-165242

Queirolo, P., Boutros, A., Tanda, E., Spagnolo, F., & Quaglino, P. (2019). Immune-checkpoint inhibitors for the treatment of metastatic melanoma: a model of cancer immunotherapy. Seminars in Cancer Biology, 59, 290–297. https://doi.org/10.1016/j.semcancer.2019.08.001

Ribas, A., Lawrence, D., Atkinson, V., Agarwal, S., Miller, W. H., Carlino, M. S., Fisher, R., Long, G. v., Hodi, F. S., Tsoi, J., Grasso, C. S., Mookerjee, B., Zhao, Q., Ghori, R., Moreno, B. H., Ibrahim, N., & Hamid, O. (2019). Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nature Medicine, 25(6), 936–940. https://doi.org/10.1038/s41591-019-0476-5

Sale, M. J., & Cook, S. J. (2013). That which does not kill me makes me stronger; Combining ERK1/2 pathway inhibitors and BH3 mimetics to kill tumour cells and prevent acquired resistance. In British Journal of Pharmacology (Vol. 169, Issue 8, pp. 1708–1722). https://doi.org/10.1111/bph.12220

Shi, H., Kong, X., Ribas, A., & Lo, R. S. (2011). Combinatorial Treatments That Overcome PDGFRβ-Driven Resistance of Melanoma Cells to V600EB-RAF Inhibition. Cancer Research, 71(15), 5067–5074. https://doi.org/10.1158/0008-5472.CAN-11-0140

Sirokmány, G., Donkó, Á., & Geiszt, M. (2016). Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends in Pharmacological Sciences, 37(4), 318–327. https://doi.org/10.1016/j.tips.2016.01.006

Soares Moretti, A. I., & Martins Laurindo, F. R. (2017). Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Archives of Biochemistry and Biophysics, 617, 106–119. https://doi.org/10.1016/j.abb.2016.11.007

Sobierajska, K., Skurzynski, S., Stasiak, M., Kryczka, J., Cierniewski, C. S., & Swiatkowska, M. (2014). Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization. Journal of Biological Chemistry, 289(9), 5758–5773. https://doi.org/10.1074/jbc.M113.479477

Sun, C., Wang, L., Huang, S., Heynen, G. J. J. E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S. M., Zecchin, D., Hobor, S., Bajpe, P. K., Lieftink, C., Mateus, C., Vagner, S., Grernrum, W., Hofland, I., Schlicker, A., … Bernards, R. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(1), 118–122. https://doi.org/10.1038/nature13121

Thota, R., Johnson, D. B., & Sosman, J. A. (2015). Trametinib in the treatment of melanoma. Expert Opinion on Biological Therapy, 15(5), 735–747. https://doi.org/10.1517/14712598.2015.1026323

Wan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Project, C. G., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., & Marais, R. (2004). Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 116(6), 855–867. https://doi.org/10.1016/S0092-8674(04)00215-6

Winterbourn, C. C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4(5), 278–286. https://doi.org/10.1038/nchembio.85

Xu, S., Sankar, S., & Neamati, N. (2014). Protein disulfide isomerase: A promising target for cancer therapy. In Drug Discovery Today (Vol. 19, Issue 3, pp. 222–240). Elsevier Ltd. https://doi.org/10.1016/j.drudis.2013.10.017

Downloads

Publicado

28/10/2022

Como Citar

DAL’AVA, B. T. .; SOUZA, N. F. de; CHAGAS, T. dos S. .; PEREIRA , G. J. V. . Comparativo entre tratamentos antineoplásicos com inibidores seletivos (BRAF/ MEK) e as novas potenciais terapias combinatórias para melanoma metastático . Research, Society and Development, [S. l.], v. 11, n. 14, p. e326111436275, 2022. DOI: 10.33448/rsd-v11i14.36275. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36275. Acesso em: 15 jan. 2025.

Edição

Seção

Artigos de Revisão