Co-production of polyhydroxyalkanoates and levan by Halomonas smyrnensis AAD6T
DOI:
https://doi.org/10.33448/rsd-v11i16.37925Keywords:
Halophiles; Halomonas smyrnensis; Polyhydroxyalkanoates; Levan; Co-production.Abstract
The simultaneous production of microbial polymers levan and poly[3-hydroxybutyrate] (PHB), a type of polyhydroxyalkanoates, was investigated in this work. The study involved the fermentation of sucrose and molasses by H. smyrnensis AAD6T (BAE2 strain) to produce PHB (intracellular) and levan (extracellular). Both polymers were isolated and characterized by FTIR. Levan was also characterized by thin-layer chromatography (TLC) and viscosimetric analysis. The amount of biomass was 25 g until the end of fermentation. The PHB rate was 0.015 g in both media and the average PHB productivity was 6.0 x 10-4 g PHB/g biomass. The highest rate of levan was 9 g/L in the range of 72–80 h, in the molasses-based medium. The FTIR spectra showed specific signals for each of the polymers, such as the peak at 1700 for the carbonyl group of esters for the PHB and signals at 900 and 800, which are typical signals for levan fructose rings. Furthermore, acid hydrolysis of levan revealed that it was formed only by fructose, as confirmed by TLC With this study, H. smyrnensis AAD6T BAE2 co-produced PHB and levan using a low-cost carbon source, showing great potential in reducing biopolymer manufacturing costs.
References
Albuquerque, P. B. S., Araujo, K. S., Silva, K. A. A., Houllou, L. M., Locatelli, G. O. & Malafaia, C. B. (2018) Potential production of bioplastics polyhydroxyalkanoates using residual glycerol. Journal of Environmental Analysis and Progress, 3, 1, 055-060.
Albuquerque, P. B. S., & Malafaia, C. B. (2018) Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. International Journal of Biological Macromolecules,107, 615-625.
Alves, A. A., Siqueira, E. C., Barros, M. P. S., Silva, P. E. C., & Houllou, L. M. (2022) Polyhydroxyalkanoates: a review of microbial production and technology application. International Journal of Environmental Science and Technology, 1-12.
Amaro, T. M. M. M., Rosa, D., Comi, G. & Iacumin, L. (2019). Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology, 10, 992, 1-10.
Arvidson, S. A., Rinehart, B. T. & Gadala-Maria, F. (2006). Concentration regimes of solutions of levan polysaccharide from Bacillus sp. Carbohydrate Polymers, 65, 2, 144-149.
Benigar, E., Tomsic, M., Sretenovic, S., Stopar, D., Jamnik, A. & Dogsa, I. (2015). Evaluating SAXS results on aqueous solutions of various bacterial levan utilizing the string-of-beads model. Acta Chimica Slovenica, 62, 509-517.
Castro, T. R., Macedo, D. C., Chiroli, D. M. G., Silva, R. C. & Tebcherani, S. M. (2022). The potential of cleaner fermentation processes for bioplastic production: A narrative review of polyhydroxyalkanoates (PHA) and polylactic acid (PLA). Journal of Polymers and the Environment, 30, 810-832.
Dahech, I., Fakhfakh, J., Damak M, Belghith, H., Mejdoub., H. & Belghith, K. S. (2013). Structural determination and NMR characterization of a bacterial exopolysaccharide. International Journal of Biological Macromolecules, 59, 417-422.
Djuríc, A., Gojgíc-Cvijovíc, G., Jakovljevíc, D., Kekez, B., Kojíc, J. S., Mattinen, M. L., Harju, I. E., Vrvíc, M. M. & Beskoski, V. P. (2017). Brachybacterium sp. CH-KOV3 isolated from an oil-polluted environment – a new producer of levan. International Journal of Biological Macromolecules, 104, 311-321.
Erkorkmaz, B. A., Kırtel, O., Abaramak, G., Nikerel, E., & Öner, E. T. (2022). UV and chemically induced Halomonas smyrnensis mutants for enhanced levan productivity. Journal of Biotechnology, 356, 19-29.
Jathore, N. R., Bule, M. V., Tilay, A. V. & Annapure, U. S. (2012). Microbial levan from Pseudomonas fluorescens: Characterization and medium optimization for enhanced production. Food Science and Biotechnology, 21, 4, 1045-1053.
Kang, S.A., Jang, K.H., Seo, J.W., Kim, K.H., Kim, Y.H., Rairakhwada, D., Seo, M.Y., Lee, J.O., Ha, S.D., Kim, C.H., & Rhee, S.K. (2009). Levan: applications and perspectives. In: Rehm, B., Oner, A. (Eds.), Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Caister Academic Press, Poole, pp. 145-161.
Kırtel, O., Lescrinier, E., Van den Ende, W. & Öner, E. T. (2019). Discovery of fructans in Archaea. Carbohydrate Polymers, 220, 149-156.
Küçükaşik, F., Kazak, H., Güney, D., Finore, I., Poli, A., Yenigün, O., Nicolaus, B. & Oner, E. T. (2011). Molasses as fermentation substrate for levan production by Halomonas sp. Applied Microbiology and Biotechnology, 89, 1729-1740.
Lima, L. B., Silva, M. D., Viçoso, T. G. L., Martins, M. L. F., Silva, J. J., Silva, J. P. T., Lapena, S. A. B., Cruz, C. H. G., & Ernandes, F. M. P. G. (2020) Produção de levana por fermentação submersa utilizando Zymomonas mobilis cct 4494. Research, Society and Development, 9, 10, e3899108526. http://dx.doi.org/10.33448/rsd-v9i10.8526.
Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z. & Zeng, X. (2010). Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 79, 206-213.
Öner, E. T., Hernández, L. & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology Advances, 34, 5, 827-844.
PlasticsEurope (2021). Plastics - the Facts. https://plasticseurope.org/resources/publications/. Accessed 22 Set 2022.
Samui, A. B. & Kanai, T. (2019). Polyhydroxyalkanoates based copolymers. International Journal of Biological Macromolecules, 140, 522-537.
Shih, I-L., Chen, L-D., Wang, T-C., Wu, J-Y., & Liaw, K-S. (2010). Tandem production of levan and ethanol by microbial fermentation. Green Chemistry, 12, 7, 1242-1247.
Shih, I-L., Wang, T-C., Chou, S-Z., & Lee, G-D. (2011). Sequential production of two biopolymers-levan and poly-ε-lysine by microbial fermentation. Bioresource Technology, 102, 4, 3966-3969.
Siqueira, E. C., Rebouças, J. S., Pinheiro, I. O., & Formiga, F. R. (2020) Levan-based nanostructured systems: An overview. International Journal of Pharmaceutics, 580, 119242.
Siqueira, E.C., Vieira, A.M., Pinheiro, I.O. & Formiga, F.R. (2017). Development of nanoparticles from a biofabricated fructose polymer. Tissue Engineering: Part A, 23, S-154.
Stojkoviç, B., Sretenovic, S., Dogsa, I., Poberaj, I. & Stopar, D. (2015). Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology. Biophysical Journal, 108, 758-765.
Runyon, J. R., Nilsson, L., Ulmius, M., Castro, A., Ionescu, R., Andersson, C. & Schmidt, C. (2014). Characterizing changes in levan physicochemical properties in different pH environments using asymmetric flow field-flow fractionation. Analytical and Bioanalytical Chemistry, 406,1597-1605.
Timilsena, Y. P., Adhikari, R., Kasapis, S. & Adhikari, B. (2015). Rheological and microstructural properties of the chia seedpolysaccharide. International Journal of Biological Macromolecules, 81, 991-999.
Tohme, S., Hacıosmanoğlu, G. G., Eroğlu, M. S., Kasavi, C., Genç, S., Can, S. G., & Oner, E. T. (2018). Halomonas smyrnensis as a cell factory for co-production of PHB and levan. International Journal of Biological Macromolecules, 2018, 1238-1246.
Torres, C. A. V., Ferreira, A. R. V., Freitas, F., Reis, M. A. M., Coelhoso, I., Sousa, I. & Alves, V. D. (2015). Rheological studies of the fucose-rich exopolysaccharide FucoPol. International Journal of Biological Macromolecules, 79, 611-617.
Vega‑Vidaurri, J., Hernandez‑Rosas, F., Rios‑Corripio, M. A., Loeza‑Corte, J. M., Rojas‑Lopez, M., & Hernandez‑Martinez, R. (2022). Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. Chemical Papers, 76, 2419-2429.
Xu, X., Gao, C., Liu, Z., Wu, J., Han, J., Yan, M. & Wu, Z. (2016). Characterization of the levan produced by Paenibacillus bovis sp. nov BD3526 and its immunological activity. Carbohydrate Polymers, 144, 178-186.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Edmilson Clarindo de Siqueira; Laureen Michelle Houllou
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.