A hydroalcoholic blackberry leaf extract improved glucose tolerance and body composition and attenuated depression-like symptoms in ovariectomized rats.

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.39334

Keywords:

Menopause; Morus nigra; Glucose tolerance; Depression; Anxiety.

Abstract

Blackberry leaves (Morus nigra) are used in menopause to relieve hot flashes and night sweats and have been investigated in metabolic disorders. However, few studies investigated its effects on metabolic and behavioral disorders when associated with menopause. This study evaluated the effects of a hydroalcoholic extract of M. nigra leaves (MN) on body composition, glucose tolerance, and depression and anxiety-like behaviors in ovariectomized rats. For this purpose, 36 female Wistar rats were divided into groups: C – control; COvx – ovariectomized; MNOvx – ovariectomized and given MN at 400 mg.kg-1 body mass/day. Body composition was assessed by DEXA, glucose tolerance by the oral glucose tolerance test, and depression and anxiety-like behaviors by the forced swimming and elevated plus maze tests, respectively. Food intake and body mass gain were higher for MNOvx, followed by COvx and C (p<0.05). The MNOvx group gained less body fat than COvx (p<0.05) and was more glucose tolerant compared to C and COvx (p<0.05). In the elevated plus maze, COvx and MNOvx remained for less time in the open arms and longer in the closed arms than C (p<0.05). In forced swimming, immobility time was higher for COvx, followed by C and MNOvx (p<0.05). The MN protected ovariectomized rats from body fat gain, improved glucose tolerance, and attenuated depression-like behavior. Phytoestrogens and other bioactive compounds in MN may be involved in these effects.

References

Abouzid, S. F., Ahmed, O. M., Ahmed, R. R., Mahmoud, A., Abdella, E., & Ashour, M. B. (2014). Antihyperglycemic effect of crude extracts of some Egyptian plants and algae. Journal of Medicinal Food, 17(3), 400–406. https://doi.org/10.1089/JMF.2013.0068

Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 137. https://doi.org/10.1016/J.BIOPHA.2021.111315

Alkhalidy, H., Moore, W., Zhang, Y., McMillan, R., Wang, A., Ali, M., Suh, K. S., Zhen, W., Cheng, Z., Jia, Z., Hulver, M., & Liu, D. (2015). Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β -Cell Mass in Middle-Aged Obese Diabetic Mice. Journal of Diabetes Research, 2015. https://doi.org/10.1155/2015/532984

Al-Safi, Z. A., & Polotsky, A. J. (2015). Obesity and menopause. Best Practice & Research. Clinical Obstetrics & Gynaecology, 29(4), 548–553. https://doi.org/10.1016/J.BPOBGYN.2014.12.002

ANVISA. (2007). RESOLUÇÃO-RDC No 67, DE 8 DE OUTUBRO DE 2007. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2007/res0067_08_10_2007.html

Araujo, C. M., Lúcio, K. D. P., Silva, M. E., Isoldi, M. C., de Souza, G. H. B., Brandão, G. C., Schulz, R., & Costa, D. C. (2015). Morus nigra leaf extract improves glycemic response and redox profile in the liver of diabetic rats. Food & Function, 6(11), 3490–3499. https://doi.org/10.1039/C5FO00474H

Arnold, S. E., Arvanitakis, Z., Macauley-Rambach, S. L., Koenig, A. M., Wang, H. Y., Ahima, R. S., Craft, S., Gandy, S., Buettner, C., Stoeckel, L. E., Holtzman, D. M., & Nathan, D. M. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nature Reviews. Neurology, 14(3), 168–181. https://doi.org/10.1038/NRNEUROL.2017.185

Bruns, C. M., & Kemnitz, J. W. (2004). Sex hormones, insulin sensitivity, and diabetes mellitus. ILAR Journal, 45(2), 160–169. https://doi.org/10.1093/ILAR.45.2.160

Carracher, A. M., Marathe, P. H., & Close, K. L. (2018). International Diabetes Federation 2017. Journal of Diabetes, 10(5), 353–356. https://doi.org/10.1111/1753-0407.12644

Dalmagro, A. P., Camargo, A., Severo Rodrigues, A. L., & Zeni, A. L. B. (2019). Involvement of PI3K/Akt/GSK-3β signaling pathway in the antidepressant-like and neuroprotective effects of Morus nigra and its major phenolic, syringic acid. Chemico-Biological Interactions, 314. https://doi.org/10.1016/J.CBI.2019.108843

Dalmagro, A. P., Camargo, A., & Zeni, A. L. B. (2017). Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metabolic Brain Disease, 32(6), 1963–1973. https://doi.org/10.1007/S11011-017-0089-Y

de Paoli, M., Zakharia, A., & Werstuck, G. H. (2021). The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. The American Journal of Pathology, 191(9), 1490–1498. https://doi.org/10.1016/J.AJPATH.2021.05.011

Edwards, B. J., & Li, J. (2013). Endocrinology of menopause. Periodontology 2000, 61(1), 177–194. https://doi.org/10.1111/J.1600-0757.2011.00407.X

Espeland, M. A., Stefanick, M. L., Kritz-Silverstein, D., Fineberg, S. E., Waclawiw, M. A., James, M. K., & Greendale, G. A. (1997). Effect of postmenopausal hormone therapy on body weight and waist and hip girths. Journal of Clinical Endocrinology and Metabolism, 82(5), 1549–1556. https://doi.org/10.1210/JC.82.5.1549

Fan, L., Peng, Y., Wu, D., Hu, J., Shi, X., Yang, G., & Li, X. (2020). Dietary supplementation of Morus nigra L. leaves decrease fat mass partially through elevating leptin-stimulated lipolysis in pig model. Journal of Ethnopharmacology, 249. https://doi.org/10.1016/J.JEP.2019.112416

Fernández-Demeneghi, R., Rodríguez-Landa, J. F., Guzmán-Gerónimo, R. I., Acosta-Mesa, H. G., Meza-Alvarado, E., Vargas-Moreno, I., & Herrera-Meza, S. (2019). Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. International Journal of Food Sciences and Nutrition, 70(7), 856–867. https://doi.org/10.1080/09637486.2019.1580680

Figueiredo, C. P., Barros-Aragão, F. G. Q., Neris, R. L. S., Frost, P. S., Soares, C., Souza, I. N. O., Zeidler, J. D., Zamberlan, D. C., de Sousa, V. L., Souza, A. S., Guimarães, A. L. A., Bellio, M., Marcondes de Souza, J., Alves-Leon, S. v., Neves, G. A., Paula-Neto, H. A., Castro, N. G., de Felice, F. G., Assunção-Miranda, I., & Ferreira, S. T. (2019). Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nature Communications 2019 10:1, 10(1), 1–16. https://doi.org/10.1038/s41467-019-11866-7

Fraulob, J. C., Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M. B., & Mandarim-de-Lacerda, C. A. (2010). A Mouse Model of Metabolic Syndrome: Insulin Resistance, Fatty Liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 Mice Fed a High Fat Diet. Journal of Clinical Biochemistry and Nutrition, 46(3), 212–223. https://doi.org/10.3164/JCBN.09-83

Gaballah, H. H., Zakaria, S. S., Mwafy, S. E., Tahoon, N. M., & Ebeid, A. M. (2017). Mechanistic insights into the effects of quercetin and/or GLP-1 analogue liraglutide on high-fat diet/streptozotocin-induced type 2 diabetes in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 92, 331–339. https://doi.org/10.1016/J.BIOPHA.2017.05.086

Godsland, I. F. (2005). Oestrogens and insulin secretion. Diabetologia, 48(11), 2213–2220. https://doi.org/10.1007/S00125-005-1930-0

Harlow, S. D., Gass, M., Hall, J. E., Lobo, R., Maki, P., Rebar, R. W., Sherman, S., Sluss, P. M., & de Villiers, T. J. (2012). Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. The Journal of Clinical Endocrinology and Metabolism, 97(4), 1159–1168. https://doi.org/10.1210/JC.2011-3362

Hogervorst, E., Craig, J., & O'Donnell, E. (2022). Cognition and mental health in menopause: A review. Best Practice & Research. Clinical Obstetrics & Gynaecology, 81, 69–84. https://doi.org/10.1016/J.BPOBGYN.2021.10.009

IDF Diabetes Atlas – (8th edition). (2017). 8th edition - IDF Diabetes Atlas. https://diabetesatlas.org/atlas/eighth-edition/

Jaballah, A., Soltani, I., Bahia, W., Dandana, A., Hasni, Y., Miled, A., & Ferchichi, S. (2021). The Relationship Between Menopause and Metabolic Syndrome: Experimental and Bioinformatics Analysis. Biochemical Genetics, 59(6), 1558–1581. https://doi.org/10.1007/S10528-021-10066-7

Johnson, A., Roberts, L., & Elkins, G. (2019). Complementary and Alternative Medicine for Menopause. Journal of Evidence-Based Integrative Medicine, 24, 1–14. https://doi.org/10.1177/2515690X19829380

Jones, G. L., & Sutton, A. (2008). Quality of life in obese postmenopausal women. Menopause International, 14(1), 26–32. https://doi.org/10.1258/MI.2007.007034

Júnior, I. I. D. S., Barbosa, H. D. M., Carvalho, D. C. R., Barros, R. D. A., Albuquerque, F. P., da Silva, Di. H. A., Souza, G. R., Souza, N. A. C., Rolim, L. A., Silva, F. M. M., Duarte, G. I. B. P., Almeida, J. R. G. D. S., de Oliveira Júnior, F. M., Gomes, D. A., & Lira, E. C. (2017). Brazilian Morus nigra Attenuated Hyperglycemia, Dyslipidemia, and Prooxidant Status in Alloxan-Induced Diabetic Rats. TheScientificWorldJournal, 2017. https://doi.org/10.1155/2017/5275813

Lim, S. H., & Choi, C. I. (2019). Pharmacological Properties of Morus nigra L. (Black Mulberry) as A Promising Nutraceutical Resource. Nutrients, 11(2). https://doi.org/10.3390/NU11020437

Lizcano, F., & Guzmán, G. (2014). Estrogen Deficiency and the Origin of Obesity during Menopause. BioMed Research International, 2014. https://doi.org/10.1155/2014/757461

Lock, M. (1991). Contested meanings of the menopause. Lancet (London, England), 337(8752), 1270–1272. https://doi.org/10.1016/0140-6736(91)92931-Q

Lovejoy, J. C., Champagne, C. M., de Jonge, L., Xie, H., & Smith, S. R. (2008). Increased visceral fat and decreased energy expenditure during the menopausal transition. International Journal of Obesity (2005), 32(6), 949–958. https://doi.org/10.1038/IJO.2008.25

Lund, K. S., Siersma, V. D., Christensen, K. B., Waldorff, F. B., & Brodersen, J. (2018). Measuring bothersome menopausal symptoms: Development and validation of the MenoScores questionnaire. Health and Quality of Life Outcomes, 16(1), 1–12. https://doi.org/10.1186/S12955-018-0927-6/TABLES/5

Marlatt, K. L., Pitynski-Miller, D. R., Gavin, K. M., Moreau, K. L., Melanson, E. L., Santoro, N., & Kohrt, W. M. (2022). Body composition and cardiometabolic health across the menopause transition. Obesity (Silver Spring, Md.), 30(1), 14–27. https://doi.org/10.1002/OBY.23289

Marlatt, K. L., Redman, L. M., Beyl, R. A., Smith, S. R., Champagne, C. M., Yi, F., & Lovejoy, J. C. (2020). Racial differences in body composition and cardiometabolic risk during the menopause transition: a prospective, observational cohort study. American Journal of Obstetrics and Gynecology, 222(4), 365.e1-365.e18. https://doi.org/10.1016/J.AJOG.2019.09.051

Monteleone, P., Mascagni, G., Giannini, A., Genazzani, A. R., & Simoncini, T. (2018). Symptoms of menopause - global prevalence, physiology and implications. Nature Reviews. Endocrinology, 14(4), 199–215. https://doi.org/10.1038/NRENDO.2017.180

Moreira, M. de A., Brito, M. V. H., Brito, N. M. B., & Freire Filho, M. de S. L. (2005). Estudo histomorfométrico do músculo esquelético de ratos em anestro. Acta Cirúrgica Brasileira, 20(4), 329–335. https://doi.org/10.1590/S0102-86502005000400012

Moura, C. A., Oliveira-Júnior, R. G., Oliveira, A. P., Silva, A. L. N., Silva, J. M. S., Santos, R. F., Santos, M. C. M., Alves, C. S. C., Dutra, L. M., Costa, E. v, & Almeida, J. R. G. S. (2019). Chemical Constituents from the Leaves of Morus nigra L. (Moraceae) Collected in Casa Nova, Bahia, Brazil. Revista Virtual de Química, 11(2), 394–400. https://doi.org/10.21577/1984-6835.20190029

Obermeyer, C. M. (2000). Menopause across cultures: a review of the evidence. Menopause (New York, N.Y.), 7(3), 184–192. https://doi.org/10.1097/00042192-200007030-00009

Palacios, S., Stevenson, J. C., Schaudig, K., Lukasiewicz, M., & Graziottin, A. (2019). Hormone therapy for first-line management of menopausal symptoms: Practical recommendations. Women's Health, 15. https://doi.org/10.1177/1745506519864009

Polumackanycz, M., Wesolowski, M., & Viapiana, A. (2021). Morus alba L. and Morus nigra L. Leaves as a Promising Food Source of Phenolic Compounds with Antioxidant Activity. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 76(4), 458–465. https://doi.org/10.1007/S11130-021-00922-7

Ponnulakshmi, R., Shyamaladevi, B., Vijayalakshmi, P., & Selvaraj, J. (2019). In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicology Mechanisms and Methods, 29(4), 276–290. https://doi.org/10.1080/15376516.2018.1545815

Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., Jackson, R. D., Beresford, S. A. A., Howard, B. v., Johnson, K. C., Kotchen, J. M., & Ockene, J. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA, 288(3), 321–333. https://doi.org/10.1001/JAMA.288.3.321

Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799A

Savergnini, S. Q., Reis, A. M., Santos, R. A. S., Santos, P. E. B., Ferreira, A. J., & Almeida, A. P. (2012). Effects of short-term administration of estradiol on reperfusion arrhythmias in rats of different ages. Brazilian Journal of Medical and Biological Research, 45(12), 1248–1254. https://doi.org/10.1590/S0100-879X2012007500169

Shifren, J. L., Gass, M. L. S., Kagan, R., Kaunitz, A. M., Liu, J. H., Pinkerton, J. A. v., Schnatz, P. F., Stuenkel, C. A., Allam, S. H., Allen, R. H., Bachmann, G. A., Merz, C. N. B., Bergfeld, W. F., Block, J. A., Clarkson, T. B., Clayton, J. A., Cwiak, C., Davis, S. R., Diab, D., & Schiff, I. (2014). The North American Menopause Society recommendations for clinical care of midlife women. Menopause (New York, N.Y.), 21(10), 1038–1062. https://doi.org/10.1097/GME.0000000000000319

Sinatora, R. V., Chagas, E. F. B., Mattera, F. O. P., Mellem, L. J., dos Santos, A. R. de O., Pereira, L. P., Aranão, A. L. de C., Guiguer, E. L., Araújo, A. C., Haber, J. F. D. S., Guissoni, L. C., & Barbalho, S. M. (2022). Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women. Metabolites, 12(1). https://doi.org/10.3390/METABO12010073

Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols 2012 7:6, 7(6), 1009–1014. https://doi.org/10.1038/nprot.2012.044

Soares, C. N. (2007). Menopausal transition and depression: who is at risk and how to treat it? Expert Review of Neurotherapeutics, 7(10), 1285–1293. https://doi.org/10.1586/14737175.7.10.1285

Sokri, M. A., Hussin, M. M., Pahirulzaman, K. A. K., & Saidan, N. H. (2021). Effectiveness of ethanolic and methanolic Morus nigra extracts on microbial strains. AIP Conference Proceedings, 2347(1), 020153. https://doi.org/10.1063/5.0051514

Thurston, R. C., Sowers, M. F. R., Sutton-Tyrrell, K., Everson-Rose, S. A., Lewis, T. T., Edmundowicz, D., & Matthews, K. A. (2008). Abdominal adiposity and hot flashes among midlife women. Menopause (New York, N.Y.), 15(3), 429–434. https://doi.org/10.1097/GME.0B013E31815879CF

Thurston, R. C., Sowers, M. R., Sternfeld, B., Gold, E. B., Bromberger, J., Chang, Y., Joffe, H., Crandall, C. J., Waetjen, L. E., & Matthews, K. A. (2009). Gains in body fat and vasomotor symptom reporting over the menopausal transition: the study of women's health across the nation. American Journal of Epidemiology, 170(6), 766–774. https://doi.org/10.1093/AJE/KWP203

Voedisch, A. J., Dunsmoor-Su, R., & Kasirsky, J. (2021). Menopause: A Global Perspective and Clinical Guide for Practice. Clinical Obstetrics and Gynecology, 64(3), 528–554. https://doi.org/10.1097/GRF.0000000000000639

Wadden, T. A., Butryn, M. L., Sarwer, D. B., Fabricatore, A. N., Crerand, C. E., Lipschutz, P. E., Faulconbridge, L., Raper, S., & Williams, N. N. (2006). Comparison of psychosocial status in treatment-seeking women with class III vs. class I–II obesity. Surgery for Obesity and Related Diseases, 2(2), 138–145. https://doi.org/10.1016/J.SOARD.2006.03.016

Wang, L., Wang, J., Ma, M., Shen, L., Huang, T., Huang, C., Jia, A., & Hu, X. (2022). Prenylated flavonoids from Morus nigra and their insulin sensitizing activity. Phytochemistry, 203, 113398. https://doi.org/10.1016/J.PHYTOCHEM.2022.113398

Xu, Y., Fu, J. F., Chen, J. H., Zhang, Z. W., Zou, Z. Q., Han, L. Y., Hua, Q. H., Zhao, J. S., Zhang, X. H., & Shan, Y. J. (2018). Sulforaphane ameliorates glucose intolerance in obese mice via the upregulation of the insulin signaling pathway. Food & Function, 9(9), 4695–4701. https://doi.org/10.1039/C8FO00763B

Yan, H., Yang, W., Zhou, F., Li, X., Pan, Q., Shen, Z., Han, G., Newell-Fugate, A., Tian, Y., Majeti, R., Liu, W., Xu, Y., Wu, C., Allred, K., Allred, C., Sun, Y., & Guo, S. (2019). Estrogen Improves Insulin Sensitivity and Suppresses Gluconeogenesis via the Transcription Factor Foxo1. Diabetes, 68(2), 291–304. https://doi.org/10.2337/DB18-0638

Zhang, Y., Zhen, W., Maechler, P., & Liu, D. (2013). Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB. The Journal of Nutritional Biochemistry, 24(4), 638–646. https://doi.org/10.1016/J.JNUTBIO.2012.03.008

Downloads

Published

13/01/2023

How to Cite

MENDES, M. F. .; FIGUEIRÓ, M. T. O. .; NUNES, M. R. .; PEREIRA, R. E. dos S. .; DIAS, I. R. .; MORENO, L. G. .; SAMPAIO, K. H. .; ESTEVES, E. A. . A hydroalcoholic blackberry leaf extract improved glucose tolerance and body composition and attenuated depression-like symptoms in ovariectomized rats. Research, Society and Development, [S. l.], v. 12, n. 2, p. e1512239334, 2023. DOI: 10.33448/rsd-v12i2.39334. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39334. Acesso em: 23 nov. 2024.

Issue

Section

Health Sciences