Proposal for intervention and ventilation adjustments to correct the asynchrony of reflex reverse triggering vs low drive reverse triggering caused by overlapping mechanical cycles

Authors

DOI:

https://doi.org/10.33448/rsd-v13i1.44635

Keywords:

Intensive Care Unit; Physiotherapy; Mechanical ventilation.

Abstract

Objective: To propose a ventilation correction for the various causes of reverse triggering (RD). Method: this is an observational study, with a descriptive objective and a qualitative approach, where patients undergoing invasive mechanical ventilation (IMV) were analyzed, with a sample size of 19 individuals, fully sedated and/or blocked, presenting reverse firing asynchrony. The expiratory pause maneuver of approximately 3 seconds was used to classify the groups of patients with reflex reverse triggering (DRR) Vs low drive (DRB). In the absence of muscle pressure (Pmus), these were classified in the DRR group and those who showed Pmus activation in the DRB group. Results: It was observed that correction maneuvers aimed at reducing lung strain, such as reducing total tidal volume (VT), reducing programmed respiratory frequency (RR) and reducing positive end-expiratory pressure (PEEP) were effective. for the correction of the DRR group. Ventilatory adjustment procedures with determination of support RR (10 to 12ipm), associated with reduction or stop of sedation/blocker, were efficient for patients in the DBB group. Conclusion: it is noted that the determination and classification of the different causes of DR can guide clinical correction procedures in addition to appropriate ventilation adjustments for each group of these asynchronies, the DRR and DRB. It is noted that the determination and classification of the different causes of DR can guide clinical correction procedures in addition to appropriate ventilation adjustments for each group of these asynchronies, those of RRD and DRB. Cases of RRD (involuntary-reflex DR) showed a 50% success rate in the given therapy, with greater research needs to identify with greater accuracy the etiology of the reflex cause, so that new correction methods are available in the scientific field, to the correction of this reflex dyssynchrony.

References

Akoumianaki, E., Lyazidi, A., Rey, N., Matamis, D., Perez-Martinez, N., Giraud, R., Mancebo, J., Brochard, L., & Richard, J. M. (2013). Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest, 143(4), 927–938. https://doi.org/10.1378/chest.12-1817

Alexopoulou, C., Kondili, E., Plataki, M., & Georgopoulos, D. (2013). Patient-ventilator synchrony and sleep quality with proportional assist and pressure support ventilation. Intensive care medicine, 39(6), 1040–1047. https://doi.org/10.1007/s00134-013-2850-y

Baedorf Kassis, E., Loring, S. H., & Talmor, D. (2018). Lung volumes and transpulmonary pressure are decreased with expiratory effort and restored with passive breathing in ARDS: a reapplication of the traditional Campbell diagram. Intensive care medicine, 44(4), 534–536. https://doi.org/10.1007/s00134-018-5105-0

Barbas, C. S., Isola, A. M., Farias, A. M., Cavalcanti, A. B., Gama, A. M., Duarte, A. C., Vianna, A., Serpa Neto, A., Bravim, B.deA., Pinheiro, B.doV., Mazza, B. F., Carvalho, C. R., Toufen Júnior, C., David, C. M., Taniguchi, C., Mazza, D. D., Dragosavac, D., Toledo, D. O., Costa, E. L., Caser, E. B., & Amado, V. M. (2014). Brazilian recommendations of mechanical ventilation 2013. Part I. Revista Brasileira de terapia intensiva, 26(2), 89–121. https://doi.org/10.5935/0103-507x.20140017

Beitler, J. R., Sands, S. A., Loring, S. H., Owens, R. L., Malhotra, A., Spragg, R. G., Matthay, M. A., Thompson, B. T., & Talmor, D. (2016). Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive care medicine, 42(9), 1427–1436. https://doi.org/10.1007/s00134-016-4423-3

Bellani G, et al. (2013) Measurement of patient-ventilator asynchrony in patients with acute respiratory distress syndrome. Crit Care Med. 41(11):2634-2643.

Blanch, L., Villagra, A., Sales, B., Montanya, J., Lucangelo, U., Luján, M., García-Esquirol, O., Chacón, E., Estruga, A., Oliva, J. C., Hernández-Abadia, A., Albaiceta, G. M., Fernández-Mondejar, E., Fernández, R., Lopez-Aguilar, J., Villar, J., Murias, G., & Kacmarek, R. M. (2015). Asynchronies during mechanical ventilation are associated with mortality. Intensive care medicine, 41(4), 633–641. https://doi.org/10.1007/s00134-015-3692-6

Branson R. D. (2011). Patient-ventilator interaction: the last 40 years. Respiratory care, 56(1), 15–24. https://doi.org/10.4187/respcare.00937

Chanques, G., Kress, J. P., Pohlman, A., Patel, S., Poston, J., Jaber, S., & Hall, J. B. (2013). Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Critical care medicine, 41(9), 2177–2187. https://doi.org/10.1097/CCM.0b013e31828c2d7a

Chao, D. C., Scheinhorn, D. J., & Stearn-Hassenpflug, M. (1997). Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest, 112(6), 1592–1599. https://doi.org/10.1378/chest.112.6.1592

Colombo, D., Cammarota, G., Alemani, M., Carenzo, L., Barra, F. L., Vaschetto, R., Slutsky, A. S., Della Corte, F., & Navalesi, P. (2011). Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Critical care medicine, 39(11), 2452–2457. https://doi.org/10.1097/CCM.0b013e318225753c

Conti, G., Ranieri, V. M., Costa, R., Garratt, C., Wighton, A., Spinazzola, G., Urbino, R., Mascia, L., Ferrone, G., Pohjanjousi, P., Ferreyra, G., & Antonelli, M. (2016). Effects of dexmedetomidine and propofol on patient-ventilator interaction in difficult-to-wean, mechanically ventilated patients: a prospective, open-label, randomised, multicentre study. Critical care (London, England), 20(1), 206. https://doi.org/10.1186/s13054-016-1386-2

de Wit, M., Miller, K. B., Green, D. A., Ostman, H. E., Gennings, C., & Epstein, S. K. (2009). Ineffective triggering predicts increased duration of mechanical ventilation. Critical care medicine, 37(10), 2740–2745. https://doi.org/10.1097/ccm.0b013e3181a98a05

de Wit, M., Pedram, S., Best, A. M., & Epstein, S. K. (2009). Observational study of patient-ventilator asynchrony and relationship to sedation level. Journal of critical care, 24(1), 74–80. https://doi.org/10.1016/j.jcrc.2008.08.011

Drouot, X., Bridoux, A., Thille, A. W., Roche-Campo, F., Cordoba-Izquierdo, A., Katsahian, S., Brochard, L., & d'Ortho, M. P. (2014). Sleep continuity: a new metric to quantify disrupted hypnograms in non-sedated intensive care unit patients. Critical care (London, England), 18(6), 628. https://doi.org/10.1186/s13054-014-0628-4.

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Gilstrap, D., & MacIntyre, N. (2013). Patient-ventilator interactions. Implications for clinical management. American journal of respiratory and critical care medicine, 188(9), 1058–1068. https://doi.org/10.1164/rccm.201212-2214CI

Gorman, E. A., O'Kane, C. M., & McAuley, D. F. (2022). Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet (London, England), 400(10358), 1157–1170. https://doi.org/10.1016/S0140-6736(22)01439-8.

Jones HA, et al. (2016). Ventilatory asynchrony in chronic obstructive pulmonary disease: clinical implications and treatment. Drug Des Devel Ther. 10:1763-1772.

Liotti, M., Brannan, S., Egan, G., Shade, R., Madden, L., Abplanalp, B., Robillard, R., Lancaster, J., Zamarripa, F. E., Fox, P. T., & Denton, D. (2001). Brain responses associated with consciousness of breathlessness (air hunger). Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2035–2040. https://doi.org/10.1073/pnas.98.4.2035

Marini, J. J., Rodriguez, R. M., & Lamb, V. (1986). The inspiratory workload of patient-initiated mechanical ventilation. The American review of respiratory disease, 134(5), 902–909. https://doi.org/10.1164/arrd.1986.134.5.902

Mellott, K. G., Grap, M. J., Munro, C. L., Sessler, C. N., Wetzel, P. A., Nilsestuen, J. O., & Ketchum, J. M. (2014). Patient ventilator asynchrony in critically ill adults: frequency and types. Heart & lung: the journal of critical care, 43(3), 231–243. https://doi.org/10.1016/j.hrtlng.2014.02.002

Murias, G., Lucangelo, U., & Blanch, L. (2016). Patient-ventilator asynchrony. Current opinion in critical care, 22(1), 53–59. https://doi.org/10.1097/MCC.0000000000000270

Murray, B., Sikora, A., Mock, J. R., Devlin, T., Keats, K., Powell, R., & Bice, T. (2022). Reverse Triggering: An Introduction to Diagnosis, Management, and Pharmacologic Implications. Frontiers in Pharmacology, 22(13),879011. https:// 10.3389/fphar.2022.879011.

Nava, S., Bruschi, C., Fracchia, C., Braschi, A., & Rubini, F. (1997). Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. The European respiratory journal, 10(1), 177–183. https://doi.org/10.1183/09031936.97.10010177

Piquilloud L, et al. (2012). Efficiency of ventilator triggering: a bench study comparing pressure, flow, and NAVA triggering systems. Intensive Care Med. 38(6):930-936.

Pohlman, M. C., McCallister, K. E., Schweickert, W. D., Pohlman, A. S., Nigos, C. P., Krishnan, J. A., Charbeneau, J. T., Gehlbach, B. K., Kress, J. P., & Hall, J. B. (2008). Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Critical care medicine, 36(11), 3019–3023. https://doi.org/10.1097/CCM.0b013e31818b308b

Privitera, E., Gambazza, S., Rossi, V., Santambrogio, M., Binda, F., Tarello, D., Caiffa, S., Turrin, V., Casagrande, C., Battaglini, D., Panigada, M., Fumagalli, R., Pelosi, P., & Grasselli, G. (2022). Association of ventilator-free days with respiratory physiotherapy in critically ill patients with Coronavirus Disease 2019 (COVID-19) during the first pandemic wave. A propensity score-weighted analysis. Frontiers in medicine, 9, 994900. https://doi.org/10.3389/fmed.2022.994900.

Rodriguez, A., Telias, I., Damiani, L. F., Brochard, L. (2023). Reverse Triggering during Controlled Ventilation: From Physiology to Clinical Management. American Journal Critical Care Medicine. 207(5), 533-543. https:// 10.1164/rccm.202208-1477CI.

Schmidt, M., Demoule, A., Polito, A., Porchet, R., Aboab, J., Siami, S., Morelot-Panzini, C., Similowski, T., & Sharshar, T. (2011). Dyspnea in mechanically ventilated critically ill patients. Critical care medicine, 39(9), 2059–2065. https://doi.org/10.1097/CCM.0b013e31821e8779

Sieck, G. C., Ferreira, L. F., Reid, M. B., & Mantilla, C. B. (2013). Mechanical properties of respiratory muscles. Comprehensive Physiology, 3(4), 1553–1567. https://doi.org/10.1002/cphy.c130003

Silveira, J. M. N., Gallardo, A., García-Valdés, P., Ríos, F., Rodriguez, P. O., & Damiani, L. F. (2023). Reverse triggering during mechanical ventilation: Diagnosis and clinical implications. Medicine Intensive, 20(23),00169-8. https:// 10.1016/j.medine.2023.10.009.

Subirá, C., de Haro, C., Magrans, R., Fernández, R., & Blanch, L. (2018). Minimizing Asynchronies in Mechanical Ventilation: Current and Future Trends. Respiratory Care. 63(4):464-478. https:// 10.4187/respcare.05949.

Thille, A. W., Rodriguez, P., Cabello, B., Lellouche, F., & Brochard, L. (2006). Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive care medicine, 32(10), 1515–1522. https://doi.org/10.1007/s00134-006-0301-8

Tobin M. J. (2001). Advances in mechanical ventilation. The New England journal of medicine, 344(26), 1986–1996. https://doi.org/10.1056/NEJM200106283442606

Vaschetto, R., Cammarota, G., Colombo, D., Longhini, F., Grossi, F., Giovanniello, A., Della Corte, F., & Navalesi, P. (2014). Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Critical care medicine, 42(1), 74–82. https://doi.org/10.1097/CCM.0b013e31829e53dc

Vasconcelos, R S., Melo, L. H., Sales, R. P., Marinho, L. S., Deulefeu, F. C., Reis, R. C., Alves-de-Almeida, M., & Holanda, M. A. (2013). Effect of an automatic triggering and cycling system on comfort and patient-ventilator synchrony during pressure support ventilation. Respiration; international review of thoracic diseases, 86(6), 497–503. https://doi.org/10.1159/000353256

Vasconcelos, R. S., Sales, R. P., Melo, L. H. P., Marinho, L. S., Bastos, V. P., Nogueira, A. D. N., Ferreira, J. C., & Holanda, M. A. (2017). Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation. Respiratory care, 62(5), 550–557. https://doi.org/10.4187/respcare.05025

Wunsch, H., Linde-Zwirble, W. T., Angus, D. C., Hartman, M. E., Milbrandt, E. B., & Kahn, J. M. (2010). The epidemiology of mechanical ventilation use in the United States. Critical care medicine, 38(10), 1947–1953. https://doi.org/10.1097/CCM.0b013e3181ef4460

Yonis, H., Crognier, L., Conil, J. M., Serres, I., Rouget, A., Virtos, M., Cougot, P., Minville, V., Fourcade, O., & Georges, B. (2015). Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC anesthesiology, 15, 117. https://doi.org/10.1186/s12871-015-0091-z

Yonis, H., Gobert, F., Tapponnier, R., & Guérin, C. (2015). Reverse triggering in a patient with ARDS. Intensive care medicine, 41(9), 1711–1712. https://doi.org/10.1007/s00134-015-3702-8

Published

10/01/2024

How to Cite

VIEIRA FILHO, W. de A. .; FERREIRA, M. J. S. .; NUNES, J. S.; LOPES, N. L. S. .; MACIEL, F. L. .; CONCEIÇÃO, M. V. da .; KAYBERS, T. Proposal for intervention and ventilation adjustments to correct the asynchrony of reflex reverse triggering vs low drive reverse triggering caused by overlapping mechanical cycles. Research, Society and Development, [S. l.], v. 13, n. 1, p. e4713144635, 2024. DOI: 10.33448/rsd-v13i1.44635. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44635. Acesso em: 21 nov. 2024.

Issue

Section

Health Sciences