Anatomical plasticity of Pinus taeda L. needles in the sun and shade of the mountainous region of Santa Catarina
DOI:
https://doi.org/10.33448/rsd-v13i7.46360Keywords:
Leaf anatomy; Luminosity; Structural variation.Abstract
The growth and development of conifers are related to the capacity for photosynthesis and gas exchange in their persistent leaves (needles), as well as related to the long-term availability of irradiance in gradients across the canopy. The objective of the present research was to describe the morphophysiological variations and compare the phenotypic plasticity of Pinus taeda L. leaves under sun and shade in cultivation in the mountainous region of Santa Catarina. leaves under sun and shade in cultivation in the mountainous region of Santa Catarina. Leaves were collected from five plants under sun and shade conditions. Histological analyzes of leaf measurements were performed using light microscopy. For each morphometric characteristic, the phenotypic plasticity index was calculated. In sun leaves, the thickness of the epidermis on the adaxial surface was smaller, while the area of the central cylinder, the area of the phloem and the resinous ducts were larger. The central cylinder presented the highest phenotypic plasticity index (0.40), followed by the epidermis on the adaxial surface (0.28), the phloem (0.27) and the resinous duct (0.25). The lowest plasticity indices were recorded for the chlorophyll parenchyma on the adaxial side (0.03) and for the epidermis on the abaxial side (0.03). The results indicate that light promotes structural changes in P. taeda leaves related to the mechanisms of reception of direct sunlight (adaxial face) and the conduction of synthesis products through the plant (area of the central cylinder, phloem and resinous ducts).
References
Alves, E. S. & Angyalossi-Alfonso, V. (2000). Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal, 21 (1), 3-30.
Amorim, M. W. & Melo Junior, J. C. F. (2017). Plasticidade morfoanatômica foliar de Tibouchina clavata (Melastomataceae) ocorrente em duas formações de restinga. Rodriguésia, 68 (2), 545-555. http://doi.org/10.1590/2175-7860201768217
Aragão, D. S., Lunz, A. M. P., Oliveira, L. C., Raposo, A., & Fermino Junior, P. C. P. (2014). Efeito do sombreamento na anatomia foliar de plantas jovens de andiroba (Carapa guianensis Aubl.). Revista Árvore, 38 (4), 631-639. https://doi.org/10.1590/S0100-67622014000400006
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society, 160, 268-282. https://doi.org/10.1098/rspa.1937.0109
Bastias, C. C., Valladares, F., Ricote, N., & Benavides, R. (2018). Local canopy diversity does not influence phenotypic expression and plasticity of tree seedlings exposed to different resource availabilities. Environmental and Experimental Botany, 156 (1), 38-47. https://doi.org/10.1016/j.envexpbot.2018.08.023
Bennett, J. J. R., Bera, B. K., Ferré, M., Yizhaq, H., Getzin, S., & Meron, E. (2023). Phenotypic plasticity: a missing elemento in the theory of vegetation pattern formation. PNAS, 120 (50), e2311528120. https://doi.org/10.1073/pnas.2311528120
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. In Advances in genetics. (E.M. Caspary & J.M. Thoday, eds.). Academic Press, New York. p.115-155.
Brodersen, C. R. & Vogelmann, T. C. (2007). Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany, 94 (7), 1061-1066.https://doi.org/10.3732/ajb.94.7.1061
Castro, E. M., Pinto, J. E. B. P., Soares, A. M., Melo, H. C., Bertolucci, S. K. V., Vieira, C. V., & Lima Junior, E. C. L. (2007). Adaptações anatômicas de folhas de Mikania glomerata Sprengel (Asteraceae), em três regiões distintas da planta, em diferentes níveis de sombreamento. Revista Brasileira de Plantas Medicinais, 9 (2), 8-16.
Chauhan, K., Sharma, K. R., Dutt, B., & Chauhan, R. (2022). Comparative anatomy of resin ducts in some western himalayan softwoods. Vegetos,35, 935–941.https://doi.org/10.1007/s42535-022-00375-6
Chin, A. R. O. & Sillett, S. C. (2016). Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer. American Journal of Botany, 103 (5), 796-807. https://doi.org/10.3732/ajb.1600110
Dardengo, J. F. E., Rossi, A. A. B., Silva, I. V., Pessoa, M. J. G., & Silva, C. J. (2017). Análise da influência luminosa nos aspectos anatômicos de folhas de Theobroma speciosum Willd ex Spreng. (Malvaceae). Ciência Florestal, 27 (3), 843-851. https://doi.org/10.5902/1980509828634
Delian, E., & Savulescu, E. Anatomical and physiological changes in needles of Pinus nigra J.F. Arnold reveal urban traffic air pollution driven effects (2022). Horticulture, 66 (1), 674-684.
Dörken, V. M. & Lepetit, B. (2018). Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Muller (Pinaceae, Coniferales): a combined approach. Plant, Cell & Environment, 41, 1683- 1697. http://doi.org/10.1111/pce.13213
Dörken, V. M. & Stützel, T. (2012). Morphology, anatomy and vasculature of leaves in Pinus (Pinaceae) and its evolutionary meaning. Flora, 207 (1), 57-62. https://doi.org/10.1016/j.flora.2011.10.004
Evans, J. R. & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24 (8), 755-767. https://doi.org/10.1046/j.1365-3040.2001.00724.x
Fermino Junior, P. C. P. & Fockink, G. D. (2017). Anatomia foliar de plantas jovens de erva-mate (Ilex paraguariensis A. St. Hill.) sob diferentes níveis de sombreamento. Scientia Agraria Paranaensis, 16 (3), 335-341.
Ferreira, D. F. Programa Sisvar.exe: sistema de análise de variância. Versão 3.04. Lavras: 2015.
Gebauer, R.; Cermák, J.; Plichta, R.; Spinlerová, Z.; Urban, J.; Volarik, D. & Ceulemans, R. (2015). Within-canopy variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees, 29 (5), 1447-1457. http://doi.org/10.1007/s00468-015-1224-1
Gernandt, D. S., Lopez, G. G., Garcia, S. O., & Liston, A. (2005). Phylogeny and classification of Pinus. Taxon, 54, 29–42. https://doi.org/10.2307/25065300
Ghimire, B., Lee, C., Yang, J., & Heo, K. (2015). Comparative leaf anatomy of native and cultivated Pinus (Pinaceae) in Korea: implications for the subgeneric classification. Plant Systematics and Evolution, 301, 531-540. http://doi.org/10.1007/s00606-014-1090-0
Guerra, A., Gonçalves, L. G., Santos, L. da S., & Medri, C. (2015). Morfoanatomia de folhas de sol e sombra de Handroanthus chrysotrichus (MART. EX DC.) Mattos (Bignoniaceae). Revista de Saúde e Biologia, 10(1), 59–71. http://68.183.29.147/revista/index.php/sabios/article/view/1656
Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 313 (1), 1-17. https://doi.org/10.1155/2014/208747
Hengxiao, G., McMillin; J. D., Wagner, M. R.; Zhou, J., Zhou, Z., & Xu, X. (1999). Altitudinal variation in foliar chemistry and anatomy of Yunnan Pine, Pinus yunnanensis, and pine sawfly (Hym. Diprionidae) performance. Journal of Applied Entomology, 123 (8), 465–471. https://doi.org/10.1046/j.1439-0418.1999.00395.x
Ibá - Indústria Brasileira de Árvores. Relatório anual IBÁ 2020. São Paulo: IBÁ, 2020. 66 p.
Ibge - Instituto Brasileiro de Geografia e Estatística. Produção da extração vegetal e da silvicultura 2019. Rio de Janeiro: IBGE, 2020. 74 p.
Javelle, M., Vernoud, V., Rogowsky, P. M., & Ingram, G. C. (2011). Epidermis: the formation and functions of a fundamental plant tissue. New Phytologist, 189 (1), 17-39. https://doi.org/10.1111/j.1469-8137.2010.03514.x
Johansen, D. A. (1940). Plant microtechnique. New York, McGraw Hill Book Company, Inc. 523p.
Kraus, J. E. & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR. 198p.
Moura, A. P. C., Gil, B. V., Perboni, A. T., Oliveira, L. F. R., Sant’Anna-Santos, B. F., & Danner, M. A. (2022). Morphophysiological adjustments to shade of jaboticaba tree saplings. Revista Ceres, 69 (4), 400-407. http://doi.org/10.1590/0034-737X20226904003
Niinemets, Ü., Portsmuth, A., & Tobias, M. (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171 (1), 91-104.
Oliveira, M. T., Souza, G. M., Pereira, S., Oliveira, D. A. S., Figueiredo-Lima, K. V., Arruda, E., & Santos, M. G. (2017). Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest. Tree Physiology, 37 (3), 326-337. https://doi.org/10.1093/treephys/tpw123
O’ Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59 (2), 368-373.
Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M., Clissold, F. J., Cornelissen, J. H., Diaz, S., & Dominy, N. J. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301 – 312. https://doi.org/10.1111/j.1461-0248.2010.01582.x
Pandolfo, C., Braga, H. J., Silva JR, V. P. da, Massignam, A. M., Pereira, E. S., Thomé, V. M. R., & Valci, F. V. (2002). Atlas climatológico do Estado de Santa Catarina. Florianópolis: Epagri. 13p.
Pearcy, R. W. (1990). Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 421–453. https://doi.org/10.1146/annurev.pp.41.060190.002225
Puglielli, G., Crescente, M. F., Frattaroli, A. R., & Gratani, L. (2015). Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions. Polish Journal of Ecology, 63 (1), 10-22. https://doi.org/10.3161/15052249PJE2015.63.1.002
Santos, R. C., & Carneiro, C. E. (2024). Comparative leaf anatomy under sun and shade conditions and pollen morphology of Chrysophyllum rufum Mart. (Sapotaceae). Anais da Academia Brasileira de Ciências, 96 (3), e20231007. http://doi.org/ 10.1590/0001-3765202420231007
Shapiro, S. S. & Wilk, K, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52 (3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591
Schoettle, A. W. & Rochelle, S. G. (2000). Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. American Journal of Botany, 87 (12), 1797–1806. https://doi.org/10.2307/2656832
Schopmeyer, C., Mergen, F., & Evans, T. C. (1954). Applicability of Poiseuille’s law to exudation of oleoresin from wounds on slash pine. Plant Physiology, 29 (1), 82-87. http://doi.org/10.1104/pp.29.1.82
Taiz, L. & Zeiger, E. (2004). Fisiologia vegetal. (3a ed.), Artmed, 245 p.
Telewski, F. W., Swanson, R. T., Strain, B. R., & Burns, J. M. (1999). Wood properties and ring width response to long-term atmospheric CO2 enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environment, 22, 213–219.https://doi.org/10.1046/j.1365-3040.1999.00392.x
Urban, O., Kosvancová, M., Marek, M. V., & Lichtenthaler, H. K. (2007). Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology, 27 (8), 1207-1215. https://doi.org/10.1093/treephys/27.8.1207
Valladares, F., Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology,94 (6), 1103-1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x
Valladares, F., Matesanz, S., Guilhaumon, F., Araujo, M. B., Balaguer, L., & Benito-Garzon, M. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351–1364. https://doi.org/10.1111/ele.12348
Vázquez-González, C., Zas, R., Erbilgin, N., Ferrenberg, S., Rozas, V., & Sampedro, L. (2020). Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology, 40 (10), 1313–26. https://doi.org/10.1093/treephys/tpaa064
Vogelmann, T. C., Bornman, J. F., & Yates, D.J. (1996). Focusing of light by leaf epidermal cells. Physiologia Plantarum, 98 (1), 43–56. https://doi.org/10.1111/j.1399-3054.1996.tb00674.x
Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., & Mickler, R. A. (2020). Estimation of Leaf Photosynthetic Capacity From Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation. JGR Biogeosciences, 125 (2), e2019JG005020. https://doi.org/10.1029/2019JG005020
Wyka, T. P., Oleksyn, J., Zytkowiak, R., karolewski, P., Jagodzinski, A. M., & Reich, P. B. (2012). Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia, 170, 11-24. http://doi.org/10.1007/s00442-012-2279-y
Yates, M. J., Verboom, G. A., Rebelo, A. G., & Cramer, M. D. (2010). Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24 (3), 485-492. https://doi.org/10.1111/j.1365-2435.2009.01678.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Heloyse Caetano Vargas; Ediane Santos Gonçalves; Magnos Alan Vivian ; Paulo Cesar Poeta Fermino Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.