Plasticidad anatómica de acículas de Pinus taeda L. al sol y la sombra en la región montañosa de Santa Catarina

Autores/as

DOI:

https://doi.org/10.33448/rsd-v13i7.46360

Palabras clave:

Anatomía de la hoja; Luminosidad; Variación estructural.

Resumen

El crecimiento y desarrollo de las coníferas está relacionado con la capacidad de fotosíntesis e intercambio de gases en sus hojas persistentes (ácidas), así como con la disponibilidad a largo plazo de irradiancia en gradientes a través del dosel. El objetivo de la presente investigación fue describir las variaciones morfofisiológicas y comparar la plasticidad fenotípica de las hojas de Pinus taeda L. bajo sol y sombra en cultivo en la región montañosa de Santa Catarina. Se recolectaron hojas de cinco plantas en condiciones de sol y sombra. Los análisis histológicos de las medidas de las hojas se realizaron mediante microscopía óptica. Para cada característica morfométrica se calculó el índice de plasticidad fenotípica. En las hojas de sol, el espesor de la epidermis en la superficie adaxial fue menor, mientras que el área del cilindro central, el área del floema y los conductos resinosos fueron mayores. El cilindro central presentó el mayor índice de plasticidad fenotípica (0,40), seguido de la epidermis de la superficie adaxial (0,28), el floema (0,27) y el conducto resinoso (0,25). Los índices de plasticidad más bajos se registraron para el parénquima de clorofila en el lado adaxial (0,03) y para la epidermis en el lado abaxial (0,03). Los resultados indican que la luz promueve cambios estructurales en las hojas de P. taeda relacionados con los mecanismos de recepción de la luz solar directa (cara adaxial) y la conducción de productos de síntesis a través de la planta (área del cilindro central, floema y conductos resinosos).

Citas

Alves, E. S. & Angyalossi-Alfonso, V. (2000). Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal, 21 (1), 3-30.

Amorim, M. W. & Melo Junior, J. C. F. (2017). Plasticidade morfoanatômica foliar de Tibouchina clavata (Melastomataceae) ocorrente em duas formações de restinga. Rodriguésia, 68 (2), 545-555. http://doi.org/10.1590/2175-7860201768217

Aragão, D. S., Lunz, A. M. P., Oliveira, L. C., Raposo, A., & Fermino Junior, P. C. P. (2014). Efeito do sombreamento na anatomia foliar de plantas jovens de andiroba (Carapa guianensis Aubl.). Revista Árvore, 38 (4), 631-639. https://doi.org/10.1590/S0100-67622014000400006

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society, 160, 268-282. https://doi.org/10.1098/rspa.1937.0109

Bastias, C. C., Valladares, F., Ricote, N., & Benavides, R. (2018). Local canopy diversity does not influence phenotypic expression and plasticity of tree seedlings exposed to different resource availabilities. Environmental and Experimental Botany, 156 (1), 38-47. https://doi.org/10.1016/j.envexpbot.2018.08.023

Bennett, J. J. R., Bera, B. K., Ferré, M., Yizhaq, H., Getzin, S., & Meron, E. (2023). Phenotypic plasticity: a missing elemento in the theory of vegetation pattern formation. PNAS, 120 (50), e2311528120. https://doi.org/10.1073/pnas.2311528120

Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. In Advances in genetics. (E.M. Caspary & J.M. Thoday, eds.). Academic Press, New York. p.115-155.

Brodersen, C. R. & Vogelmann, T. C. (2007). Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany, 94 (7), 1061-1066.https://doi.org/10.3732/ajb.94.7.1061

Castro, E. M., Pinto, J. E. B. P., Soares, A. M., Melo, H. C., Bertolucci, S. K. V., Vieira, C. V., & Lima Junior, E. C. L. (2007). Adaptações anatômicas de folhas de Mikania glomerata Sprengel (Asteraceae), em três regiões distintas da planta, em diferentes níveis de sombreamento. Revista Brasileira de Plantas Medicinais, 9 (2), 8-16.

Chauhan, K., Sharma, K. R., Dutt, B., & Chauhan, R. (2022). Comparative anatomy of resin ducts in some western himalayan softwoods. Vegetos,35, 935–941.https://doi.org/10.1007/s42535-022-00375-6

Chin, A. R. O. & Sillett, S. C. (2016). Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer. American Journal of Botany, 103 (5), 796-807. https://doi.org/10.3732/ajb.1600110

Dardengo, J. F. E., Rossi, A. A. B., Silva, I. V., Pessoa, M. J. G., & Silva, C. J. (2017). Análise da influência luminosa nos aspectos anatômicos de folhas de Theobroma speciosum Willd ex Spreng. (Malvaceae). Ciência Florestal, 27 (3), 843-851. https://doi.org/10.5902/1980509828634

Delian, E., & Savulescu, E. Anatomical and physiological changes in needles of Pinus nigra J.F. Arnold reveal urban traffic air pollution driven effects (2022). Horticulture, 66 (1), 674-684.

Dörken, V. M. & Lepetit, B. (2018). Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Muller (Pinaceae, Coniferales): a combined approach. Plant, Cell & Environment, 41, 1683- 1697. http://doi.org/10.1111/pce.13213

Dörken, V. M. & Stützel, T. (2012). Morphology, anatomy and vasculature of leaves in Pinus (Pinaceae) and its evolutionary meaning. Flora, 207 (1), 57-62. https://doi.org/10.1016/j.flora.2011.10.004

Evans, J. R. & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24 (8), 755-767. https://doi.org/10.1046/j.1365-3040.2001.00724.x

Fermino Junior, P. C. P. & Fockink, G. D. (2017). Anatomia foliar de plantas jovens de erva-mate (Ilex paraguariensis A. St. Hill.) sob diferentes níveis de sombreamento. Scientia Agraria Paranaensis, 16 (3), 335-341.

Ferreira, D. F. Programa Sisvar.exe: sistema de análise de variância. Versão 3.04. Lavras: 2015.

Gebauer, R.; Cermák, J.; Plichta, R.; Spinlerová, Z.; Urban, J.; Volarik, D. & Ceulemans, R. (2015). Within-canopy variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees, 29 (5), 1447-1457. http://doi.org/10.1007/s00468-015-1224-1

Gernandt, D. S., Lopez, G. G., Garcia, S. O., & Liston, A. (2005). Phylogeny and classification of Pinus. Taxon, 54, 29–42. https://doi.org/10.2307/25065300

Ghimire, B., Lee, C., Yang, J., & Heo, K. (2015). Comparative leaf anatomy of native and cultivated Pinus (Pinaceae) in Korea: implications for the subgeneric classification. Plant Systematics and Evolution, 301, 531-540. http://doi.org/10.1007/s00606-014-1090-0

Guerra, A., Gonçalves, L. G., Santos, L. da S., & Medri, C. (2015). Morfoanatomia de folhas de sol e sombra de Handroanthus chrysotrichus (MART. EX DC.) Mattos (Bignoniaceae). Revista de Saúde e Biologia, 10(1), 59–71. http://68.183.29.147/revista/index.php/sabios/article/view/1656

Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 313 (1), 1-17. https://doi.org/10.1155/2014/208747

Hengxiao, G., McMillin; J. D., Wagner, M. R.; Zhou, J., Zhou, Z., & Xu, X. (1999). Altitudinal variation in foliar chemistry and anatomy of Yunnan Pine, Pinus yunnanensis, and pine sawfly (Hym. Diprionidae) performance. Journal of Applied Entomology, 123 (8), 465–471. https://doi.org/10.1046/j.1439-0418.1999.00395.x

Ibá - Indústria Brasileira de Árvores. Relatório anual IBÁ 2020. São Paulo: IBÁ, 2020. 66 p.

Ibge - Instituto Brasileiro de Geografia e Estatística. Produção da extração vegetal e da silvicultura 2019. Rio de Janeiro: IBGE, 2020. 74 p.

Javelle, M., Vernoud, V., Rogowsky, P. M., & Ingram, G. C. (2011). Epidermis: the formation and functions of a fundamental plant tissue. New Phytologist, 189 (1), 17-39. https://doi.org/10.1111/j.1469-8137.2010.03514.x

Johansen, D. A. (1940). Plant microtechnique. New York, McGraw Hill Book Company, Inc. 523p.

Kraus, J. E. & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR. 198p.

Moura, A. P. C., Gil, B. V., Perboni, A. T., Oliveira, L. F. R., Sant’Anna-Santos, B. F., & Danner, M. A. (2022). Morphophysiological adjustments to shade of jaboticaba tree saplings. Revista Ceres, 69 (4), 400-407. http://doi.org/10.1590/0034-737X20226904003

Niinemets, Ü., Portsmuth, A., & Tobias, M. (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171 (1), 91-104.

Oliveira, M. T., Souza, G. M., Pereira, S., Oliveira, D. A. S., Figueiredo-Lima, K. V., Arruda, E., & Santos, M. G. (2017). Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest. Tree Physiology, 37 (3), 326-337. https://doi.org/10.1093/treephys/tpw123

O’ Brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59 (2), 368-373.

Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M., Clissold, F. J., Cornelissen, J. H., Diaz, S., & Dominy, N. J. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301 – 312. https://doi.org/10.1111/j.1461-0248.2010.01582.x

Pandolfo, C., Braga, H. J., Silva JR, V. P. da, Massignam, A. M., Pereira, E. S., Thomé, V. M. R., & Valci, F. V. (2002). Atlas climatológico do Estado de Santa Catarina. Florianópolis: Epagri. 13p.

Pearcy, R. W. (1990). Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 421–453. https://doi.org/10.1146/annurev.pp.41.060190.002225

Puglielli, G., Crescente, M. F., Frattaroli, A. R., & Gratani, L. (2015). Morphological, anatomical and physiological leaf trait plasticity of Sesleria nitida (Poaceae) in open vs shaded conditions. Polish Journal of Ecology, 63 (1), 10-22. https://doi.org/10.3161/15052249PJE2015.63.1.002

Santos, R. C., & Carneiro, C. E. (2024). Comparative leaf anatomy under sun and shade conditions and pollen morphology of Chrysophyllum rufum Mart. (Sapotaceae). Anais da Academia Brasileira de Ciências, 96 (3), e20231007. http://doi.org/ 10.1590/0001-3765202420231007

Shapiro, S. S. & Wilk, K, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52 (3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591

Schoettle, A. W. & Rochelle, S. G. (2000). Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. American Journal of Botany, 87 (12), 1797–1806. https://doi.org/10.2307/2656832

Schopmeyer, C., Mergen, F., & Evans, T. C. (1954). Applicability of Poiseuille’s law to exudation of oleoresin from wounds on slash pine. Plant Physiology, 29 (1), 82-87. http://doi.org/10.1104/pp.29.1.82

Taiz, L. & Zeiger, E. (2004). Fisiologia vegetal. (3a ed.), Artmed, 245 p.

Telewski, F. W., Swanson, R. T., Strain, B. R., & Burns, J. M. (1999). Wood properties and ring width response to long-term atmospheric CO2 enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environment, 22, 213–219.https://doi.org/10.1046/j.1365-3040.1999.00392.x

Urban, O., Kosvancová, M., Marek, M. V., & Lichtenthaler, H. K. (2007). Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology, 27 (8), 1207-1215. https://doi.org/10.1093/treephys/27.8.1207

Valladares, F., Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology,94 (6), 1103-1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x

Valladares, F., Matesanz, S., Guilhaumon, F., Araujo, M. B., Balaguer, L., & Benito-Garzon, M. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351–1364. https://doi.org/10.1111/ele.12348

Vázquez-González, C., Zas, R., Erbilgin, N., Ferrenberg, S., Rozas, V., & Sampedro, L. (2020). Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology, 40 (10), 1313–26. https://doi.org/10.1093/treephys/tpaa064

Vogelmann, T. C., Bornman, J. F., & Yates, D.J. (1996). Focusing of light by leaf epidermal cells. Physiologia Plantarum, 98 (1), 43–56. https://doi.org/10.1111/j.1399-3054.1996.tb00674.x

Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., & Mickler, R. A. (2020). Estimation of Leaf Photosynthetic Capacity From Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation. JGR Biogeosciences, 125 (2), e2019JG005020. https://doi.org/10.1029/2019JG005020

Wyka, T. P., Oleksyn, J., Zytkowiak, R., karolewski, P., Jagodzinski, A. M., & Reich, P. B. (2012). Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia, 170, 11-24. http://doi.org/10.1007/s00442-012-2279-y

Yates, M. J., Verboom, G. A., Rebelo, A. G., & Cramer, M. D. (2010). Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24 (3), 485-492. https://doi.org/10.1111/j.1365-2435.2009.01678.x

Publicado

15/07/2024

Cómo citar

VARGAS, H. C. .; GONÇALVES, E. S. .; VIVIAN , M. A. .; FERMINO JUNIOR, P. C. P. . Plasticidad anatómica de acículas de Pinus taeda L. al sol y la sombra en la región montañosa de Santa Catarina. Research, Society and Development, [S. l.], v. 13, n. 7, p. e8213746360, 2024. DOI: 10.33448/rsd-v13i7.46360. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46360. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas