Acute thermal stress promotes morphological and molecular changes in the heart of broiler chickens

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5059

Keywords:

Poultry; Cardiac cells; Biochemical parameters.

Abstract

This study aimed to understand the possible effects of acute thermal stress (32ºC, 12 hours) on body temperature using two measurement methods (via probe and rectal), on the morphometric aspects of the heart and aortic artery, on gene expression (superoxide dismutase, glutathione peroxidase-3, nitric oxide synthase, angiotensin-converting enzyme and esterified cholesterol transfer protein), inflammatory parameters (myeloperoxidase and N-acetylglycosaminidase), oxidative stress parameters and nitrite levels in broilers (Cobb 500) at 42 days of age.  36 broilers with 42 days of age were used, distributed in a 2x2 factorial scheme: two thermal environments (comfort at 18ºC and stress at 32ºC) and two methods of measuring body temperature (via probe and rectal). Thermal stress triggered an increase in body temperature regardless of the measurement method. There was a significant effect on the thickness of the aortic artery wall and on the lateral lateral and posterior antero diameters (P <0.05). Likewise, there was a difference in the dosages of lipid hydroperoxides, in the quantification of reactive oxygen species and in the dosage of nitrite (P <0.05). The quantification of the mRNA of the induced nitric oxide synthase, angiotensin-converting enzyme and esterified cholesterol transfer protein genes were significantly higher in animals subjected to heat stress. Thus, it can be concluded that acute thermal stress was able to promote several morphological and molecular changes in the heart and aorta artery of broilers.

Author Biography

Kariny Ferreira Moreira, State University of Maringá, Paraná- PR

Doutora em Zootenia; Produção Animal

References

Aebi, H. (1984). Catalase. Methods Enzymol, 105, 121–126.

Akbarian, A., Michiels, J., Degroote, J., Majdeddin, M., Golian, A. & Smet, S. (2016). Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of animal science and biotechnology, 37(7) 1-14. doi.org/ 10.1186/s40104-016-0097-5.

Alberghina, D., Piccione, G., Amorini, A.M., Lazzarino. G., Congiu, F., Lazzarino, G. & Tavazzi, B. (2015). Body temperature and plasma nitric oxide metabolites in response to standardized exercise test in the athletic horse. Journal of Equine Veterinary Science, 35, 709-713. doi.org/ 10.1016/j.jevs.2015.06.021.

Bailey, P. J. (1988). Sponge implants as models. In Methods in enzymology, 162, 327-334.

Bradley, P. P., Priebat, D. A., Christensen, R. D. & Rothstein, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, 78, 206–209.

Brandt, R. & Keston, A. S. (1965). Synthesis of diacetyldichlorofluorescin: a stable reagent for fluorometric analysis. Analytical biochemistry, 11, 6-9.

Crandall, C. G. & Wilson, T. E. (2015). Human cardiovascular responses to passive heat stress. Comprehensive Physiology, 5(1), 17-43. doi.org/10.1002/cphy.c140015.

De Young, L. M., Kheifets, J. B., Ballaron, S. J. & Young, J. M., (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and actions, 26, 335-341.

El-Tarabany, M. S. (2016). Effect of thermal stress on fertility and egg quality of Japanese quail. Journal of thermal biology, 61, 38-43. doi.org/10.1016/j.jtherbio.2016.08.004.

Farag, E., Maheshwari, K., Morgan, J., Esa, W.A.S. & Doyle, D.J. (2015). An update of the role of renin angiotensin in cardiovascular homeostasis. Anesthesia & Analgesia, 120(2), 275-292. doi.org/10.1213/ANE.0000000000000528.

Hayashi, H., Hess, D. T., Zhang, R., Sugi, K., Gao, H., Tan, B. L. & Stamler, J.S. (2018). S-nitrosylation of β-arrestins biases receptor signaling and confers ligand independence. Molecular cell, 70(3), 473-487. doi.org/10.1016/j.molcel.2018.03.034.

Jiang, Z. Y., Woollard, A. C. & Wolff, S. P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, 26, 853-856. doi.org/ 10.1007/BF02536169.

Li, X., Liu, X., Zhang, P., Feng, C., Sun, A., Kang, H. & Fan, Y. (2017). Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness. Journal of The Royal Society Interfac, 14, 20170140. doi.org/ 10.1098/rsif.2017.0140.

Liu, C. Y., Chen, D., Bluemke, D. A., Wu, C. O., Teixido-Tura, G., Chugh, A. & Hundley, W.G. (2015). Evolution of aortic wall thickness and stiffness with atherosclerosis: long-term follow up from the multi-ethnic study of atherosclerosis. Hypertension, 65, 1015-1019. doi.org/ 10.1161/HYPERTENSIONAHA.114.05080.

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry, 47, 469-474.

Martinelli, A. E. M., Maranhão, R. C., Carvalho, P. O., Freitas, F. R., Silva, B. M., Curiati, M. N., & Pereira-Barretto, A. C. (2018). Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure. Lipids in health and disease, 17(1), 242. doi.org/10.1186/s12944-018-0888-0.

Mascarenhas, N. M. H., Costa, A. N. L. D., Pereira, M. L. L., Caldas, A. C. A. D., Batista, L. F., & Andrade, E. L. G. (2018). Thermal conditioning in the broiler production: challenges and possibilities. Journal Animal Behavior Biometeorology, 6, 52-55. doi.org/10.26667/2318-1265jabb.v6n2p52-55.

McCafferty, D. J., Pandraud, G., Gilles, J., Fabra-Puchol, M. & Henry, P. Y. (2017). Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings. Bioinspiration & biomimetics, 13(1), 011001. doi: 10.1088/1748-3190/aa9a12.

Moretti, A. C., Zotti, M. L. A. N., Boiago, M. M., de Oliveira, P. A. V., & Zampar, A. (2020). Impact of acclimatization system on zootechnical performance and thermal comfort in young broiler chickens. Research, Society and Development, 9(7), 477974363. doi.org/10.33448/rsd-v9i7.4363

Rani, V., Deep, G., Singh, R.K., Palle, K. & Yadav, U.C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Journal of life sciences, 148, 183-193. doi.org/ 10.1016/j.lfs.2016.02.002.

Rodrigues, M. M., Garcia Neto, M., Perri, S. H. V., Sandre, D. G., Faria Jr, M. J. A., Oliveira, P. M. & Cassiano, R. P. (2019). Techniques to Minimize the Effects of Acute Heat Stress or Chronic in Broilers. Brazilian Journal of Poultry Science, 21(3). doi.org/10.1590/1806-9061-2018-0962.

Roushdy, E. M., Zaglool, A. W. & El-Tarabany, M. S. (2018). Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. Journal of thermal biology, 74, 337-343. doi:10.1016/j.jtherbio.2018.04.009.

Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. (2017). Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nature reviews cardiology, 14(3), 133. doi: 10.1038/nrcardio.2016.185.

Sahraei, M. (2014). Effects of feed restriction on metabolic disorders in broiler chickens: a review. Biotechnology in Animal Husbandry, 30, 1-13. doi.org/10.2298/BAH1401001S.

Sedlak, J. & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry, 25, 192-205.

Sellier, N., Guettier, E. & Staub, C. (2014). A review of methods to measure animal body temperature in precision farming. American Journal of Agricultural Science and Technology, 2, 74-99. doi.org/10.7726/ajast.2014.1008.

Statiscal Analyses System - SAS. SAS/STAT 2004: version 9.1 Cary: 2004.

Tickle, P. G., Paxton, H., Rankin, J. W., Hutchinson, J. R. & Codd, J. R. (2014). Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ, 2, e432. doi.org/10.7717/peerj.432.

Tiwari, V., Kuhad, A. & Chopra, K. (2011). Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido‐nitrosative stress mediated inflammatory cascade. Phytotherapy research, 25, 1527-1536. doi.org/10.1002/ptr.3440.

Tuleta, I., Bauriedel, G., Peuster, M., Andrié, R., Pabst, S., Nickenig, G. & Skowasch, D. (2011). FKBP12+ S100+ Dendritic Cells as Novel Cellular Targets for Rapamycin in Post Stent Neointima. J Clinic Experiment Cardiol, 2, 141. doi.org/10.1159/000110417.

Warholm, M., Guthenberg, C., Von Bahr, C. & Mannervik, B. (1985). Glutathione transferases from human liver. In Methods in enzymology, 113, 499-504.

Zaboli, G. R., Rahimi, S., Shariatmadari, F., Torshizi, M. A. K., Baghbanzadeh, A. & Mehri, M. (2016). Thermal manipulation during Pre and Post-Hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poultry science, 96, 478-485. doi.org/10.3382/ps/pew344.

Downloads

Published

24/06/2020

How to Cite

MOREIRA, K. F.; NEVES, C. Q.; BORGES, S. C.; VESCO, A. P. D.; SPEZIALI, M. I. B. R.; BUTTOW, N. C. .; BARBOSA, C. P.; GASPARINO, E. Acute thermal stress promotes morphological and molecular changes in the heart of broiler chickens. Research, Society and Development, [S. l.], v. 9, n. 8, p. e63985059, 2020. DOI: 10.33448/rsd-v9i8.5059. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5059. Acesso em: 26 nov. 2024.

Issue

Section

Agrarian and Biological Sciences