El estrés térmico agudo promueve cambios morfológicos y moleculares en el corazón de los pollos de engorde

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.5059

Palabras clave:

avicultura; células cardíacas; parámetros bioquímicos.

Resumen

Este estudio tuvo como objetivo comprender los posibles efectos del estrés térmico agudo (32ºC, 12 horas) en la temperatura corporal utilizando dos métodos de medición (a través de sonda y rectal), en los aspectos morfométricos del corazón y la arteria aórtica, en la expresión génica (superóxido dismutasa, glutatión peroxidasa-3, óxido nítrico sintasa, enzima convertidora de angiotensina y proteína de transferencia de colesterol esterificada), parámetros inflamatorios (mieloperoxidasa y N-acetilglucosaminidasa), parámetros de estrés oxidativo y niveles de nitrito en pollos de engorde (Cobb 500) a los 42 días de edad. Se utilizaron 36 pollos de engorde con 42 días de edad, distribuidos en un esquema factorial 2x2: dos ambientes térmicos (comodidad a 18ºC y estrés a 32ºC) y dos métodos para medir la temperatura corporal (a través de sonda y rectal). El estrés térmico provocó un aumento de la temperatura corporal, independientemente del método de medición. Hubo un efecto significativo en el grosor de la pared de la arteria aórtica y en los diámetros antero lateral y posterior (P <0.05). Asimismo, hubo una diferencia en las dosis de hidroperóxidos lipídicos, en la cuantificación de especies reactivas de oxígeno y en la dosis de nitrito (P <0.05). La cuantificación del ARNm de la sintasa de óxido nítrico inducida, la enzima convertidora de angiotensina y los genes de proteína de transferencia de colesterol esterificada fueron significativamente mayores en animales sometidos a estrés por calor. Por lo tanto, se puede concluir que el estrés térmico agudo fue capaz de promover varios cambios morfológicos y moleculares en el corazón y la arteria aorta de los pollos de engorde.

Biografía del autor/a

Kariny Ferreira Moreira, State University of Maringá, Paraná- PR

Doutora em Zootenia; Produção Animal

Citas

Aebi, H. (1984). Catalase. Methods Enzymol, 105, 121–126.

Akbarian, A., Michiels, J., Degroote, J., Majdeddin, M., Golian, A. & Smet, S. (2016). Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of animal science and biotechnology, 37(7) 1-14. doi.org/ 10.1186/s40104-016-0097-5.

Alberghina, D., Piccione, G., Amorini, A.M., Lazzarino. G., Congiu, F., Lazzarino, G. & Tavazzi, B. (2015). Body temperature and plasma nitric oxide metabolites in response to standardized exercise test in the athletic horse. Journal of Equine Veterinary Science, 35, 709-713. doi.org/ 10.1016/j.jevs.2015.06.021.

Bailey, P. J. (1988). Sponge implants as models. In Methods in enzymology, 162, 327-334.

Bradley, P. P., Priebat, D. A., Christensen, R. D. & Rothstein, G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, 78, 206–209.

Brandt, R. & Keston, A. S. (1965). Synthesis of diacetyldichlorofluorescin: a stable reagent for fluorometric analysis. Analytical biochemistry, 11, 6-9.

Crandall, C. G. & Wilson, T. E. (2015). Human cardiovascular responses to passive heat stress. Comprehensive Physiology, 5(1), 17-43. doi.org/10.1002/cphy.c140015.

De Young, L. M., Kheifets, J. B., Ballaron, S. J. & Young, J. M., (1989). Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents and actions, 26, 335-341.

El-Tarabany, M. S. (2016). Effect of thermal stress on fertility and egg quality of Japanese quail. Journal of thermal biology, 61, 38-43. doi.org/10.1016/j.jtherbio.2016.08.004.

Farag, E., Maheshwari, K., Morgan, J., Esa, W.A.S. & Doyle, D.J. (2015). An update of the role of renin angiotensin in cardiovascular homeostasis. Anesthesia & Analgesia, 120(2), 275-292. doi.org/10.1213/ANE.0000000000000528.

Hayashi, H., Hess, D. T., Zhang, R., Sugi, K., Gao, H., Tan, B. L. & Stamler, J.S. (2018). S-nitrosylation of β-arrestins biases receptor signaling and confers ligand independence. Molecular cell, 70(3), 473-487. doi.org/10.1016/j.molcel.2018.03.034.

Jiang, Z. Y., Woollard, A. C. & Wolff, S. P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, 26, 853-856. doi.org/ 10.1007/BF02536169.

Li, X., Liu, X., Zhang, P., Feng, C., Sun, A., Kang, H. & Fan, Y. (2017). Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness. Journal of The Royal Society Interfac, 14, 20170140. doi.org/ 10.1098/rsif.2017.0140.

Liu, C. Y., Chen, D., Bluemke, D. A., Wu, C. O., Teixido-Tura, G., Chugh, A. & Hundley, W.G. (2015). Evolution of aortic wall thickness and stiffness with atherosclerosis: long-term follow up from the multi-ethnic study of atherosclerosis. Hypertension, 65, 1015-1019. doi.org/ 10.1161/HYPERTENSIONAHA.114.05080.

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry, 47, 469-474.

Martinelli, A. E. M., Maranhão, R. C., Carvalho, P. O., Freitas, F. R., Silva, B. M., Curiati, M. N., & Pereira-Barretto, A. C. (2018). Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure. Lipids in health and disease, 17(1), 242. doi.org/10.1186/s12944-018-0888-0.

Mascarenhas, N. M. H., Costa, A. N. L. D., Pereira, M. L. L., Caldas, A. C. A. D., Batista, L. F., & Andrade, E. L. G. (2018). Thermal conditioning in the broiler production: challenges and possibilities. Journal Animal Behavior Biometeorology, 6, 52-55. doi.org/10.26667/2318-1265jabb.v6n2p52-55.

McCafferty, D. J., Pandraud, G., Gilles, J., Fabra-Puchol, M. & Henry, P. Y. (2017). Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings. Bioinspiration & biomimetics, 13(1), 011001. doi: 10.1088/1748-3190/aa9a12.

Moretti, A. C., Zotti, M. L. A. N., Boiago, M. M., de Oliveira, P. A. V., & Zampar, A. (2020). Impact of acclimatization system on zootechnical performance and thermal comfort in young broiler chickens. Research, Society and Development, 9(7), 477974363. doi.org/10.33448/rsd-v9i7.4363

Rani, V., Deep, G., Singh, R.K., Palle, K. & Yadav, U.C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Journal of life sciences, 148, 183-193. doi.org/ 10.1016/j.lfs.2016.02.002.

Rodrigues, M. M., Garcia Neto, M., Perri, S. H. V., Sandre, D. G., Faria Jr, M. J. A., Oliveira, P. M. & Cassiano, R. P. (2019). Techniques to Minimize the Effects of Acute Heat Stress or Chronic in Broilers. Brazilian Journal of Poultry Science, 21(3). doi.org/10.1590/1806-9061-2018-0962.

Roushdy, E. M., Zaglool, A. W. & El-Tarabany, M. S. (2018). Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. Journal of thermal biology, 74, 337-343. doi:10.1016/j.jtherbio.2018.04.009.

Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. (2017). Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nature reviews cardiology, 14(3), 133. doi: 10.1038/nrcardio.2016.185.

Sahraei, M. (2014). Effects of feed restriction on metabolic disorders in broiler chickens: a review. Biotechnology in Animal Husbandry, 30, 1-13. doi.org/10.2298/BAH1401001S.

Sedlak, J. & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry, 25, 192-205.

Sellier, N., Guettier, E. & Staub, C. (2014). A review of methods to measure animal body temperature in precision farming. American Journal of Agricultural Science and Technology, 2, 74-99. doi.org/10.7726/ajast.2014.1008.

Statiscal Analyses System - SAS. SAS/STAT 2004: version 9.1 Cary: 2004.

Tickle, P. G., Paxton, H., Rankin, J. W., Hutchinson, J. R. & Codd, J. R. (2014). Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ, 2, e432. doi.org/10.7717/peerj.432.

Tiwari, V., Kuhad, A. & Chopra, K. (2011). Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido‐nitrosative stress mediated inflammatory cascade. Phytotherapy research, 25, 1527-1536. doi.org/10.1002/ptr.3440.

Tuleta, I., Bauriedel, G., Peuster, M., Andrié, R., Pabst, S., Nickenig, G. & Skowasch, D. (2011). FKBP12+ S100+ Dendritic Cells as Novel Cellular Targets for Rapamycin in Post Stent Neointima. J Clinic Experiment Cardiol, 2, 141. doi.org/10.1159/000110417.

Warholm, M., Guthenberg, C., Von Bahr, C. & Mannervik, B. (1985). Glutathione transferases from human liver. In Methods in enzymology, 113, 499-504.

Zaboli, G. R., Rahimi, S., Shariatmadari, F., Torshizi, M. A. K., Baghbanzadeh, A. & Mehri, M. (2016). Thermal manipulation during Pre and Post-Hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poultry science, 96, 478-485. doi.org/10.3382/ps/pew344.

Descargas

Publicado

24/06/2020

Cómo citar

MOREIRA, K. F.; NEVES, C. Q.; BORGES, S. C.; VESCO, A. P. D.; SPEZIALI, M. I. B. R.; BUTTOW, N. C. .; BARBOSA, C. P.; GASPARINO, E. El estrés térmico agudo promueve cambios morfológicos y moleculares en el corazón de los pollos de engorde. Research, Society and Development, [S. l.], v. 9, n. 8, p. e63985059, 2020. DOI: 10.33448/rsd-v9i8.5059. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5059. Acesso em: 27 sep. 2024.

Número

Sección

Ciencias Agrarias y Biológicas