Drying kinetics of natural and parchment coffee at low temperature and relative humidity using a heat pump

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5528

Keywords:

Mathematical model; Coffea arabica L.; Prototype; Automated system.

Abstract

The objective of this work was to evaluate the drying kinetics of natural and parchment coffee beans and to fit mathematical models to experimental data using a heat pump prototype. The scientific methodology used in this experiment was a research at the laboratory level using the quantitative method. The coffee beans were pre-dried on a suspended terrace and, when they reached the initial average moisture content of 35.20 and 44.87% (wet basis), for natural and parchment coffee, respectively, they were sent for drying in the prototype of a heat pump drying system. The drying was carried out in a fixed layer, with 900 g of natural coffee and 700 g of parchment coffee. Drying was carried out under four conditions of dry bulb temperature, dew point temperature and relative humidity, in a completely randomized design, in three replications. From the determination of the humidity ratio, different mathematical models were adjusted to describe the drying kinetics of coffee beans. The drying time of natural and parchment coffee using the heat pump system can be considered low for all drying conditions,given the morphological characteristics and the high initial moisture content of the product. The Midilli model satisfactorily described the drying kinetics of naturaland parchment coffee atlow temperature, using the heat pump system. The drying rate is higher for the highest temperatures only in the initial phase of the process.

References

Aktaş, M., Ceylan, İ., & Gürel, A. E. (2014). Testing of a condensation-type heat pump system for low-temperature drying applications. International Journal of Food Engineering, 10(3), 521-531. doi: 10.1515/ijfe-2014-0124

Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. Â., & Pinto, A. C. F. (2017). Physiological and sensorial quality of Arabica coffee subjected to different temperatures and drying airflows. Acta Scientiarum. Agronomy, 39(2), 225-233. doi: 10.4025/actasciagron.v39i2.31065

Alves, G. E., Isquierdo, E. P., Borém, F. M., Siqueira, V. C., Oliveira, P. D., & Andrade, E. T. (2013). Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Coffee Science, 8(2), 238-247.

Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis, V. G. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75(2), 205-214. doi: 10.1016/j.jfoodeng.2005.04.008

Borém, F. M., Isquierdo, E. P., Alves, G. E., Ribeiro, D. E., Siqueira, V. C., & Taveira, J. H. D. S. (2018). Quality of natural coffee dried under different temperatures and drying rates. Coffee Science, 13(2), 159-167. doi: 10.25186/cs.v13i2.1410

Botelho, F. M.; Hoscher, R. H.; Hauth, M. R.; Botelho, S. C. C (2018). Cinética de secagem de grãos de soja: influência varietal. Revista engenharia na agricultura, 26(1), 13–25. doi:10.13083/reveng.v26i1.807. doi: 10.13083/reveng.v26i1.807

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2009). Regras para análise de sementes.

Companhia Nacional de Abastecimento – Conab. Acompanhamento da safra brasileira de café, v. 6 - Safra 2020, n. 1 - Primeiro levantamento, Brasília, p. 1-62, janeiro 2020.

Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234(1), 121–130. doi:10.1016/j.foodchem.2017.04.156

Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272(1), 723–731. doi:10.1016/j.foodchem.2018.08.068

Donovan, N. K., Foster, K. A., & Parra Salinas, C. A. (2019). Analysis of green coffee quality using hermetic bag storage. Journal of Stored Products Research, 80(1), 1–9. doi:10.1016/j.jspr.2018.11.003

Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53(1), 25–35. doi:10.1007/s00231-016-1791-8

Hossain, M. A., Gottschalk, K., & Hassan, M. S. (2013). Mathematical Model for a Heat Pump Dryer for Aromatic Plant. Procedia Engineering, 56(1), 510–520. doi:10.1016/j.proeng.2013.03.154

Isquierdo, E. P.; Borém, F. M.; Andrade, E.T.; Corrêa, J. L. G.; Oliveira, P. D.; Alves, G. E. (2013). Drying kinetics and quality of natural coffee. Transactions of the ASABE, 56(3), 995–1001. doi:10.13031/trans.56.9794

Kilic, A. (2017). Mathematical modeling of low temperature high velocity (LTHV) drying in foods. Journal of Food Process Engineering, 40(2), e12378. doi:10.1111/jfpe.12378

Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(1), 49–58. doi:10.1016/j.foodchem.2019.03.152

Liu, Y., Zhao, K., Jiu, M., & Zhang, Y. (2017). Design and drying technology research of heat pump lentinula edodes drying room. Procedia Engineering, 205(1), 983–988. doi:10.1016/j.proeng.2017.10.154

Marques, E. R., Borém, F. M., Pereira, R. G. F. A., & Biaggioni, M. A. M. (2008). Eficácia do teste de acidez graxa na avaliação da qualidade do café Arábica (Coffea arabica L.) submetido a diferente períodos e temperaturas de secagem. Ciência e Agrotecnologia, 32(5), 1557–1562. doi:10.1590/s1413-70542008000500030

Olmos, L. C., Duque, E. A., & Rodriguez, E. (2017). State of the art of coffee drying technologies in Colombia and their global development. Revista Espacios, 38(29), 27-36.

Park, K. J. B., Park, K. J., Alonso, L. F. T., Cornejo, F. E. P., & Fabbro, I. M. (2014). Secagem: fundamentos e equações. Revista Brasileira de Produtos Agroindustriais, 16(1), 93–127. doi:10.15871/1517-8595/rbpa.v16n1p93-127

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa -Cientifica.pdf?sequence=1. Acesso em: 01 junho 2020.

Phitakwinai, S., Thepa, S., & Nilnont, W. (2019). Thin-layer drying of parchment arabica coffee by controlling temperature and relative humidity. Food Science & Nutrition, 7(9), 2921–2931. doi:10.1002/Fsn3.1144

Prodanov, C. C.; Freitas, E. C. de. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico, 2. ed. Novo Hamburgo: Feevale. Disponível em: http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book %20Metodologia%20do%20Trabalho%20Cientifico.pdf. Acesso em: 02 junho 2020.

Resende, O., Rodrigues, S., Siqueira, V. C., & Arcanjo, R. V. (2010). Cinética da secagem de clones de café (Coffea canephora Pierre) em terreiro de chão batido. Acta Amazonica, 40(2), 247–255. doi:10.1590/s0044-59672010000200002

Shi, Q., Zheng, Y., & Zhao, Y. (2013). Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management, 71(1), 208–216. doi:10.1016/j.enconman.2013.03.032

Siqueira, V. C., Borém, F. M., Alves, G. E., Isquierdo, E. P., Pinto, A. C. F., Ribeiro, D. E., & Ribeiro, F. C. (2017). Drying kinetics of processed natural coffee with high moisture content. Coffee Science, 12(3), 400-409. doi:10.25186/CS.V12I3.1320

Taşeri, L., Aktaş, M., Şevik, S., Gülcü, M., Uysal Seçkin, G., & Aktekeli, B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260(15), 152–159. doi:10.1016/j.foodchem.2018.03.122

Taveira, J. H. D. S., Sttela, D. V. F. D. R., Pedro, D. O., Gerson, S. G., & Eder, P. I. (2015). Post-harvest effects on beverage quality and physiological performance of coffee beans. African Journal of Agricultural Research, 10(12), 1457–1466. doi:10.5897/ajar2014.9263

Teshome, K., Girma, Z., & Eshetu, B. (2019). Assessment of pre and post-harvest management practices on coffee (Coffea arabica L.) quality determining factors in Gedeo zone, Southern Ethiopia. African Journal of Agricultural Research, 14(28), 1216-1228. doi: 10.5897/ajar2019.14116

Tunckal, C., & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150(1), 918–923. doi:10.1016/j.renene.2020.01.040

Ziegler, T., Jubaer, H., & Mellmann, J. (2013). Simulation of a heat pump dryer for medicinal plants. Chemie Ingenieur Technik, 85(3), 353–363. doi:10.1002/cite.201200123

Published

09/07/2020

How to Cite

JORDAN, R. A.; SIQUEIRA, V. C.; CAVALCANTI-MATA, M. E. R. M.; HOSCHER, R. H.; MABASSO, G. A.; MOTOMIYA, A. V. de A.; OLIVEIRA, F. C. de; MARTINS, E. A. S.; SANTOS, R. C.; QUEQUETO, W. D. Drying kinetics of natural and parchment coffee at low temperature and relative humidity using a heat pump. Research, Society and Development, [S. l.], v. 9, n. 8, p. e388985528, 2020. DOI: 10.33448/rsd-v9i8.5528. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5528. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences