Drying kinetics of natural and parchment coffee at low temperature and relative humidity using a heat pump
DOI:
https://doi.org/10.33448/rsd-v9i8.5528Keywords:
Mathematical model; Coffea arabica L.; Prototype; Automated system.Abstract
The objective of this work was to evaluate the drying kinetics of natural and parchment coffee beans and to fit mathematical models to experimental data using a heat pump prototype. The scientific methodology used in this experiment was a research at the laboratory level using the quantitative method. The coffee beans were pre-dried on a suspended terrace and, when they reached the initial average moisture content of 35.20 and 44.87% (wet basis), for natural and parchment coffee, respectively, they were sent for drying in the prototype of a heat pump drying system. The drying was carried out in a fixed layer, with 900 g of natural coffee and 700 g of parchment coffee. Drying was carried out under four conditions of dry bulb temperature, dew point temperature and relative humidity, in a completely randomized design, in three replications. From the determination of the humidity ratio, different mathematical models were adjusted to describe the drying kinetics of coffee beans. The drying time of natural and parchment coffee using the heat pump system can be considered low for all drying conditions,given the morphological characteristics and the high initial moisture content of the product. The Midilli model satisfactorily described the drying kinetics of naturaland parchment coffee atlow temperature, using the heat pump system. The drying rate is higher for the highest temperatures only in the initial phase of the process.References
Aktaş, M., Ceylan, İ., & Gürel, A. E. (2014). Testing of a condensation-type heat pump system for low-temperature drying applications. International Journal of Food Engineering, 10(3), 521-531. doi: 10.1515/ijfe-2014-0124
Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. Â., & Pinto, A. C. F. (2017). Physiological and sensorial quality of Arabica coffee subjected to different temperatures and drying airflows. Acta Scientiarum. Agronomy, 39(2), 225-233. doi: 10.4025/actasciagron.v39i2.31065
Alves, G. E., Isquierdo, E. P., Borém, F. M., Siqueira, V. C., Oliveira, P. D., & Andrade, E. T. (2013). Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Coffee Science, 8(2), 238-247.
Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis, V. G. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75(2), 205-214. doi: 10.1016/j.jfoodeng.2005.04.008
Borém, F. M., Isquierdo, E. P., Alves, G. E., Ribeiro, D. E., Siqueira, V. C., & Taveira, J. H. D. S. (2018). Quality of natural coffee dried under different temperatures and drying rates. Coffee Science, 13(2), 159-167. doi: 10.25186/cs.v13i2.1410
Botelho, F. M.; Hoscher, R. H.; Hauth, M. R.; Botelho, S. C. C (2018). Cinética de secagem de grãos de soja: influência varietal. Revista engenharia na agricultura, 26(1), 13–25. doi:10.13083/reveng.v26i1.807. doi: 10.13083/reveng.v26i1.807
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2009). Regras para análise de sementes.
Companhia Nacional de Abastecimento – Conab. Acompanhamento da safra brasileira de café, v. 6 - Safra 2020, n. 1 - Primeiro levantamento, Brasília, p. 1-62, janeiro 2020.
Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234(1), 121–130. doi:10.1016/j.foodchem.2017.04.156
Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272(1), 723–731. doi:10.1016/j.foodchem.2018.08.068
Donovan, N. K., Foster, K. A., & Parra Salinas, C. A. (2019). Analysis of green coffee quality using hermetic bag storage. Journal of Stored Products Research, 80(1), 1–9. doi:10.1016/j.jspr.2018.11.003
Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53(1), 25–35. doi:10.1007/s00231-016-1791-8
Hossain, M. A., Gottschalk, K., & Hassan, M. S. (2013). Mathematical Model for a Heat Pump Dryer for Aromatic Plant. Procedia Engineering, 56(1), 510–520. doi:10.1016/j.proeng.2013.03.154
Isquierdo, E. P.; Borém, F. M.; Andrade, E.T.; Corrêa, J. L. G.; Oliveira, P. D.; Alves, G. E. (2013). Drying kinetics and quality of natural coffee. Transactions of the ASABE, 56(3), 995–1001. doi:10.13031/trans.56.9794
Kilic, A. (2017). Mathematical modeling of low temperature high velocity (LTHV) drying in foods. Journal of Food Process Engineering, 40(2), e12378. doi:10.1111/jfpe.12378
Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(1), 49–58. doi:10.1016/j.foodchem.2019.03.152
Liu, Y., Zhao, K., Jiu, M., & Zhang, Y. (2017). Design and drying technology research of heat pump lentinula edodes drying room. Procedia Engineering, 205(1), 983–988. doi:10.1016/j.proeng.2017.10.154
Marques, E. R., Borém, F. M., Pereira, R. G. F. A., & Biaggioni, M. A. M. (2008). Eficácia do teste de acidez graxa na avaliação da qualidade do café Arábica (Coffea arabica L.) submetido a diferente períodos e temperaturas de secagem. Ciência e Agrotecnologia, 32(5), 1557–1562. doi:10.1590/s1413-70542008000500030
Olmos, L. C., Duque, E. A., & Rodriguez, E. (2017). State of the art of coffee drying technologies in Colombia and their global development. Revista Espacios, 38(29), 27-36.
Park, K. J. B., Park, K. J., Alonso, L. F. T., Cornejo, F. E. P., & Fabbro, I. M. (2014). Secagem: fundamentos e equações. Revista Brasileira de Produtos Agroindustriais, 16(1), 93–127. doi:10.15871/1517-8595/rbpa.v16n1p93-127
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa -Cientifica.pdf?sequence=1. Acesso em: 01 junho 2020.
Phitakwinai, S., Thepa, S., & Nilnont, W. (2019). Thin-layer drying of parchment arabica coffee by controlling temperature and relative humidity. Food Science & Nutrition, 7(9), 2921–2931. doi:10.1002/Fsn3.1144
Prodanov, C. C.; Freitas, E. C. de. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico, 2. ed. Novo Hamburgo: Feevale. Disponível em: http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book %20Metodologia%20do%20Trabalho%20Cientifico.pdf. Acesso em: 02 junho 2020.
Resende, O., Rodrigues, S., Siqueira, V. C., & Arcanjo, R. V. (2010). Cinética da secagem de clones de café (Coffea canephora Pierre) em terreiro de chão batido. Acta Amazonica, 40(2), 247–255. doi:10.1590/s0044-59672010000200002
Shi, Q., Zheng, Y., & Zhao, Y. (2013). Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management, 71(1), 208–216. doi:10.1016/j.enconman.2013.03.032
Siqueira, V. C., Borém, F. M., Alves, G. E., Isquierdo, E. P., Pinto, A. C. F., Ribeiro, D. E., & Ribeiro, F. C. (2017). Drying kinetics of processed natural coffee with high moisture content. Coffee Science, 12(3), 400-409. doi:10.25186/CS.V12I3.1320
Taşeri, L., Aktaş, M., Şevik, S., Gülcü, M., Uysal Seçkin, G., & Aktekeli, B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260(15), 152–159. doi:10.1016/j.foodchem.2018.03.122
Taveira, J. H. D. S., Sttela, D. V. F. D. R., Pedro, D. O., Gerson, S. G., & Eder, P. I. (2015). Post-harvest effects on beverage quality and physiological performance of coffee beans. African Journal of Agricultural Research, 10(12), 1457–1466. doi:10.5897/ajar2014.9263
Teshome, K., Girma, Z., & Eshetu, B. (2019). Assessment of pre and post-harvest management practices on coffee (Coffea arabica L.) quality determining factors in Gedeo zone, Southern Ethiopia. African Journal of Agricultural Research, 14(28), 1216-1228. doi: 10.5897/ajar2019.14116
Tunckal, C., & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150(1), 918–923. doi:10.1016/j.renene.2020.01.040
Ziegler, T., Jubaer, H., & Mellmann, J. (2013). Simulation of a heat pump dryer for medicinal plants. Chemie Ingenieur Technik, 85(3), 353–363. doi:10.1002/cite.201200123
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Rodrigo Aparecido Jordan, Valdiney Cambuy Siqueira, Mario Eduardo Rangel Moreira Cavalcanti-Mata, Renata Henrique Hoscher, Geraldo Acácio Mabasso, Anamari Viegas de Araujo Motomia, Fabrício Correia de Oliveira, Elton Aparecido Siqueira Martins, Rodrigo Couto Santos, Wellytton Darci Quequeto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.