Cinética de secagem de café natural e descascado a baixa temperatura e umidade relativa com emprego de uma bomba de calor

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.5528

Palavras-chave:

Modelo matemático; Coffea arábica L.; Protótipo; Sistema automatizado.

Resumo

Objetivou-se com este trabalho avaliar a cinética de secagem dos grãos de café natural e descascado e ajustar modelos matemáticos aos dados experimentais empregando um protótipo de bomba de calor. A metodologia científica utilizada neste experimento foi uma pesquisa a nível de laboratório empregando o método quantitativo. Os grãos de café foram submetidos a pré-secagem em terreiro suspenso e quando atingiram os teores médios de água inicial de 35,20 e 44,87% (base úmida), para o café natural e descascado, respectivamente, foram encaminhados para secagem no protótipo de sistema de secagem com bomba de calor. A secagem foi conduzida em camada fixa, utilizando 900 g de grãos de café natural e 700 g de café descascado. Submeteu-se a secagem em quatro condições de temperatura de bulbo seco, temperatura de ponto de orvalho e umidade relativa, em delineamento inteiramente casualizado, em três repetições. A partir da determinação da razão de umidade foram ajustados diferentes modelos matemáticos para a descrição da cinética de secagem dos grãos de café. O tempo de secagem do café natural e descascado utilizando o sistema de bomba de calor pode ser considerado baixo para todas as condições de secagem, dado as características morfológicas e do alto teor de água inicial do produto. O modelo de Midilli descreveu satisfatoriamente a cinética de secagem do café natural e descascado em baixa temperatura, utilizando o sistema de bomba de calor. A taxa de secagem é maior para as maiores temperaturas apenas na fase inicial do processo.

Referências

Aktaş, M., Ceylan, İ., & Gürel, A. E. (2014). Testing of a condensation-type heat pump system for low-temperature drying applications. International Journal of Food Engineering, 10(3), 521-531. doi: 10.1515/ijfe-2014-0124

Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. Â., & Pinto, A. C. F. (2017). Physiological and sensorial quality of Arabica coffee subjected to different temperatures and drying airflows. Acta Scientiarum. Agronomy, 39(2), 225-233. doi: 10.4025/actasciagron.v39i2.31065

Alves, G. E., Isquierdo, E. P., Borém, F. M., Siqueira, V. C., Oliveira, P. D., & Andrade, E. T. (2013). Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Coffee Science, 8(2), 238-247.

Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis, V. G. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75(2), 205-214. doi: 10.1016/j.jfoodeng.2005.04.008

Borém, F. M., Isquierdo, E. P., Alves, G. E., Ribeiro, D. E., Siqueira, V. C., & Taveira, J. H. D. S. (2018). Quality of natural coffee dried under different temperatures and drying rates. Coffee Science, 13(2), 159-167. doi: 10.25186/cs.v13i2.1410

Botelho, F. M.; Hoscher, R. H.; Hauth, M. R.; Botelho, S. C. C (2018). Cinética de secagem de grãos de soja: influência varietal. Revista engenharia na agricultura, 26(1), 13–25. doi:10.13083/reveng.v26i1.807. doi: 10.13083/reveng.v26i1.807

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2009). Regras para análise de sementes.

Companhia Nacional de Abastecimento – Conab. Acompanhamento da safra brasileira de café, v. 6 - Safra 2020, n. 1 - Primeiro levantamento, Brasília, p. 1-62, janeiro 2020.

Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234(1), 121–130. doi:10.1016/j.foodchem.2017.04.156

Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272(1), 723–731. doi:10.1016/j.foodchem.2018.08.068

Donovan, N. K., Foster, K. A., & Parra Salinas, C. A. (2019). Analysis of green coffee quality using hermetic bag storage. Journal of Stored Products Research, 80(1), 1–9. doi:10.1016/j.jspr.2018.11.003

Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53(1), 25–35. doi:10.1007/s00231-016-1791-8

Hossain, M. A., Gottschalk, K., & Hassan, M. S. (2013). Mathematical Model for a Heat Pump Dryer for Aromatic Plant. Procedia Engineering, 56(1), 510–520. doi:10.1016/j.proeng.2013.03.154

Isquierdo, E. P.; Borém, F. M.; Andrade, E.T.; Corrêa, J. L. G.; Oliveira, P. D.; Alves, G. E. (2013). Drying kinetics and quality of natural coffee. Transactions of the ASABE, 56(3), 995–1001. doi:10.13031/trans.56.9794

Kilic, A. (2017). Mathematical modeling of low temperature high velocity (LTHV) drying in foods. Journal of Food Process Engineering, 40(2), e12378. doi:10.1111/jfpe.12378

Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chemistry, 291(1), 49–58. doi:10.1016/j.foodchem.2019.03.152

Liu, Y., Zhao, K., Jiu, M., & Zhang, Y. (2017). Design and drying technology research of heat pump lentinula edodes drying room. Procedia Engineering, 205(1), 983–988. doi:10.1016/j.proeng.2017.10.154

Marques, E. R., Borém, F. M., Pereira, R. G. F. A., & Biaggioni, M. A. M. (2008). Eficácia do teste de acidez graxa na avaliação da qualidade do café Arábica (Coffea arabica L.) submetido a diferente períodos e temperaturas de secagem. Ciência e Agrotecnologia, 32(5), 1557–1562. doi:10.1590/s1413-70542008000500030

Olmos, L. C., Duque, E. A., & Rodriguez, E. (2017). State of the art of coffee drying technologies in Colombia and their global development. Revista Espacios, 38(29), 27-36.

Park, K. J. B., Park, K. J., Alonso, L. F. T., Cornejo, F. E. P., & Fabbro, I. M. (2014). Secagem: fundamentos e equações. Revista Brasileira de Produtos Agroindustriais, 16(1), 93–127. doi:10.15871/1517-8595/rbpa.v16n1p93-127

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa -Cientifica.pdf?sequence=1. Acesso em: 01 junho 2020.

Phitakwinai, S., Thepa, S., & Nilnont, W. (2019). Thin-layer drying of parchment arabica coffee by controlling temperature and relative humidity. Food Science & Nutrition, 7(9), 2921–2931. doi:10.1002/Fsn3.1144

Prodanov, C. C.; Freitas, E. C. de. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico, 2. ed. Novo Hamburgo: Feevale. Disponível em: http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book %20Metodologia%20do%20Trabalho%20Cientifico.pdf. Acesso em: 02 junho 2020.

Resende, O., Rodrigues, S., Siqueira, V. C., & Arcanjo, R. V. (2010). Cinética da secagem de clones de café (Coffea canephora Pierre) em terreiro de chão batido. Acta Amazonica, 40(2), 247–255. doi:10.1590/s0044-59672010000200002

Shi, Q., Zheng, Y., & Zhao, Y. (2013). Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management, 71(1), 208–216. doi:10.1016/j.enconman.2013.03.032

Siqueira, V. C., Borém, F. M., Alves, G. E., Isquierdo, E. P., Pinto, A. C. F., Ribeiro, D. E., & Ribeiro, F. C. (2017). Drying kinetics of processed natural coffee with high moisture content. Coffee Science, 12(3), 400-409. doi:10.25186/CS.V12I3.1320

Taşeri, L., Aktaş, M., Şevik, S., Gülcü, M., Uysal Seçkin, G., & Aktekeli, B. (2018). Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry, 260(15), 152–159. doi:10.1016/j.foodchem.2018.03.122

Taveira, J. H. D. S., Sttela, D. V. F. D. R., Pedro, D. O., Gerson, S. G., & Eder, P. I. (2015). Post-harvest effects on beverage quality and physiological performance of coffee beans. African Journal of Agricultural Research, 10(12), 1457–1466. doi:10.5897/ajar2014.9263

Teshome, K., Girma, Z., & Eshetu, B. (2019). Assessment of pre and post-harvest management practices on coffee (Coffea arabica L.) quality determining factors in Gedeo zone, Southern Ethiopia. African Journal of Agricultural Research, 14(28), 1216-1228. doi: 10.5897/ajar2019.14116

Tunckal, C., & Doymaz, İ. (2020). Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy, 150(1), 918–923. doi:10.1016/j.renene.2020.01.040

Ziegler, T., Jubaer, H., & Mellmann, J. (2013). Simulation of a heat pump dryer for medicinal plants. Chemie Ingenieur Technik, 85(3), 353–363. doi:10.1002/cite.201200123

Downloads

Publicado

09/07/2020

Como Citar

JORDAN, R. A.; SIQUEIRA, V. C.; CAVALCANTI-MATA, M. E. R. M.; HOSCHER, R. H.; MABASSO, G. A.; MOTOMIYA, A. V. de A.; OLIVEIRA, F. C. de; MARTINS, E. A. S.; SANTOS, R. C.; QUEQUETO, W. D. Cinética de secagem de café natural e descascado a baixa temperatura e umidade relativa com emprego de uma bomba de calor. Research, Society and Development, [S. l.], v. 9, n. 8, p. e388985528, 2020. DOI: 10.33448/rsd-v9i8.5528. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5528. Acesso em: 1 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas