Growth, ferulic acid synthesis, and histochemistry of calli of Pouteria caimito (Ruiz & Pav.) Radlk under different light qualities
DOI:
https://doi.org/10.33448/rsd-v9i8.5822Keywords:
In vitro culture; Elicitation; Total phenolics.Abstract
Interest in harnessing biological processes for the production of bioactive compounds from natural sources has increased considerably. The manipulation of light quality in callus culture is considered a promising strategy for in vitro metabolite production. The objective of this study was to investigate the influence of light quality on the growth, histochemistry, and ferulic acid production of callus cultures of P. caimito. For in vitro callus induction, 1-cm2 leaf fragments were cultured in 50% MS medium supplemented with 2,4-dichlorophenoxyacetic acid and benzylaminopurine in the absence or presence of light (white, blue, green, yellow, or red). Methanol extraction was performed with partitioning of the extract and subsequent quantification of ferulic acid using a liquid chromatograph coupled to a mass spectrometer. The presence of light promoted greater growth than the absence of light. In the interaction between light quality and culture time, linear biomass growth until 28 days was observed under yellow, red, and blue lights and in the dark. The highest callus biomass values were observed under yellow and red lights. The histochemical tests showed the presence of phenolic compounds, alkaloids, flavonoids, and terpenes. The exposure of calli cultured under white light to different light qualities and culture times did not result in significant differences in the concentration or yield of ferulic acid.
References
Ahmad, N., Rab, A., & Ahmad, N. (2016). Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Journal of Photochemistry and Photobiology B: Biology, 154, 51–56. https://doi.org/10.1016/j.jphotobiol.2015.11.015
Almeida, E. J., Jesus, N., Scaloppi, E. M. T., Martins, A. B. G., & Araújo, M. S. (2008). Propagação de três genótipos de abieiro (Pouteria caimito) por estaquia de ramos herbáceos. Acta Amazonica, 38(1), 1–4. https://doi.org/10.1590/S0044-59672008000100001
Azeez, H., Ibrahim, K., Pop, R., Pamfl, D., Harta, M., Bobis,O. (2017). Changes induced by gamma ray irradiation on biomass production and secondary metabolites accumulation in Hypericum triquetrifolium Turra callus cultures. Industrial Crops and Products, 108, 183–189. https://doi.org/10.1155/2019/3698742
Cetin, E. S. (2014). Induction of secondary metabolite production by uv-c radiation in Vitis vinifera L. Öküzgözü callus cultures. Biological Research, 47, 37–43. https://doi.org/10.1186/0717-6287-47-37
Cruz, C. D. (2013). Genes - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35(3), 271–276. https://doi.org/10.4025/actasciagron.v35i3.21251
Dantas, L. A., Melo, A. M., Pereira, P. S., Souza, L. A., Vasconcelos Filho, S. C., Silva, F. G. (2017). Histochemical screening of leaves compared to in situ and in vitro calluses of Solanum aculeatissimum Jacq.. Journal of Agricultural Science, 9, 80-96, 2017. https://doi.org/10.5539/jas.v9n7p80
David, R., & Carde, J. P. (1964). Coloration différentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif Nadi. Comptes Rendus de l'Académie des Sciences, 258, 1338–1340.
Fazal, H., Abbasi, B. H., Ahmad, N., Ali, S. S., Akbar, F., & Kanwal, F. (2016). Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. Journal of Photochemistry and Photobiology B: Biology, 159, 1–7. https://doi.org/10.1016/j.jphotobiol.2016.03.008
Furr, M., & Mahlberg, P. G. (1981). Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products, 44(2), 153–159. https://doi.org/10.1021/np50014a002
Gabe, M. (1968). Techniques histologiques. Masson & Cie.
Gazolla, A. P., Curado, F. M. L. M. J., Pedroso, R. C. N., Filho, L. C. K., Sales, J. F., Rosa, M., Costa, A. C., Pauletti, P. M., Januário, A. H., & Silva, F. G. (2017). The influence of light quality on phenolic acid and biflavonoid production in Anacardium othonianum Rizz. seedlings grown in vitro. Australian Journal of Crop Science, 11(8), 528–534. https://doi.org/10.21475/ajcs.17.11.05.p314
Giri, L., Dhyani, P., Rawat, S., Bhatt, I. D., Nandi, S. K., Rawal, R. S., & Pande, V. (2012). In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Industrial Crops and Products, 39, 1–6. https://doi.org/10.1016/j.indcrop.2012.01.024
Goujot, D., Cuvelier, M. E., Soto, P., & Courtois, F. (2019). A stoichio-kinetic model for a DPPH. -ferulic acid reaction. Talanta, 196, 284–292. https://doi.org/10.1016/j.talanta.2018.12.056
Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 14(2), 111–129. https://doi.org/10.1038/nrd4510
Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S., & Chaurasia, O. P. (2018). Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology B: Biology, 183, 258–265. https://doi.org/10.1016/j.jphotobiol.2018.04.018
Khan, T., Ullah, M. A., Garros, L., Hano, C., & Abbasi, B. H. (2019). Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica. Journal of Photochemistry and Photobiology B: Biology, 190, 163–171. https://doi.org/10.1016/j.jphotobiol.2018.10.010
Liu, H., Chen, Y., Hu, T., Zhang, S., Zhang, Y., Zhao, T., Yu, H., & Kang, Y. (2016). The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. Journal of Functional Foods, 25, 459–465. https://doi.org/10.1016/j.jff.2016.06.028
Ma, J., Yang, H., Basile, M. J., & Kennelly, E. J. (2004). Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 52(19), 5873–5878. https://doi.org/10.1021/jf049950k
Mancuso, C., & Santangelo, R. (2014). Ferulic acid: Pharmacological and toxicological aspects. Food and Chemical Toxicology, 65, 185–195. https://doi.org/10.1016/j.fct.2013.12.024
Munien, P., Naidoo, Y., Naido, G. (2015) Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L.) Dunal (Solanaceae). Planta, 242:1107–1122. https://doi.org/10.1007/s00425-015-2341-1
Nadeem, M., Abbasi, B. H., Younas, M., Ahmad, W., Zahir, A., & Hano, C. (2019). LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. Journal of Photochemistry and Photobiology B: Biology, 190, 172–178. https://doi.org/10.1016/j.jphotobiol.2018.09.011
Nascimento, W. M. O., Müller, C. H., Araújo, C. D. S., & Flores, B. C. (2011). Ensacamento de frutos de abiu visando à proteção contra o ataque da mosca-das-frutas. Revista Brasileira de Fruticultura, 33(1), 48–52. https://doi.org/10.1590/S0100-29452011000100007
Padua, M. S.; Paiva, L. V. ; Labory, C. R.G.; Alves, E.; Stein, V. C. (2013) Induction and characterization of oil palm (Elaeis guineensis Jacq.) pro-embryogenic masses. Anais da Academia Brasileira de Ciências, 85, 1545-1556. https://doi.org/10.1590/0001-37652013107912
Paiva, L. B., Goldebeck, R., Santos, W. D., & Squina, F. M. (2013). Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmaceutical Sciences, 49(3), 395–411. https://doi.org/10.1590/S1984-82502013000300002
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 01 Julho 2020.
Rocha, W. S., Lopes, R. M., Silva, D. B., Vieira, R. F., Silva, J. P., & Agostini-Costa, T. S. (2011). Compostos fenólicos totais e taninos condensados em frutas nativas do cerrado. Revista Brasileira de Fruticultura, 33(4), 1215–1221. https://doi.org/10.1590/S0100-29452011000400021
Sanonne, Fotso., Donfagsiteli, T. N. & Omokolo, N. D. (2012). Effect of culture media with changes in phenols content and soluble peroxidases activities during somatic embryogenesis in Baillonella toxisperma Pierre (Sapotaceae). Journal of Biological Sciences, 12: 332-341. https://doi.org/10.3923/jbs.2012.332.341
Santos, R. L., Guimaraes, G. P., Nobre, M. S. C., & Portela, A. S. (2011). Análise sobre a fitoterapia como prática integrativa no sistema unico de saúde. Revista Brasileira de Plantas Medicinais, 13(4), 486–491. https://doi.org/10.1590/S1516-05722011000400014
Smith, R. M. Plant tissue culture: techniques and experiments. San Diego: Academic Press, 1992. 171p.
Silva, C. A. M., Simeoni, L. A., & Silveira, D. (2009). Genus Pouteria: Chemistry and biological activity. Revista Brasileira de Farmacognosia, 19(2A), 501–509. https://doi.org/10.1590/S0102-695X2009000300025
Tariq, U., Ali, M., & Abbasi, B. H. (2014). Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology B: Biology, 130, 264–271. https://doi.org/10.1016/j.jphotobiol.2013.11.026
Torres-Rodríguez, A., Salinas-Moreno, Y., Valle-Guadarrama, S., & Alia-Tejacal, I. (2011). Soluble phenols and antioxidant activity in mamey sapote (Pouteria sapota) fruits in postharvest. Food Research International, 44, 1956–1961. https://doi.org/10.1016/j.foodres.2011.04.045
Umre, R., Ganeshpurkar, A., Ganeshpurkar, A., Pandey, S., Pandey, V., Shrivastava, A., & Dubey, N. (2018). In vitro, in vivo and in silico antiulcer activity of ferulic acid. Future Journal of Pharmaceutical Sciences, 4(2), 248–253. https://doi.org/10.1016/j.fjps.2018.08.001
Usman, H., Ullah, M. A., Jan, H., Siddiquah, A., Drouet, S., Anjum, S., Giglioli-Guviarc'h, N., Hano, C., & Abbasi, B. H. (2020). Interactive effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities of Solanum xanthocarpum callus cultures. Molecules, 25(9), 2201. https://doi.org/10.3390/molecules25092201
Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105–113. https://doi.org/10.1016/j.jarmap.2015.09.002
Weston, E., Thorogood, K., Vinti, G., & López-Juez, E. (2000). Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta, 211, 807–815. https://doi.org/10.1007/s004250000392
Wojciechowska, R., Długosz-Grochowska, O., Kołton, A., & Żupnik, M. (2015). Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles. Scientia Horticulturae, 187, 80–86. https://doi.org/10.1016/j.scienta.2015.03.006
Yoon, Y. J., Mobin, M., Hahn, E. J., & Paek, K. Y. (2009). Impact of in vitro CO2 enrichment and sugar deprivation on acclimatory responses of Phalaenopsis plantlets to ex vitro conditions. Environmental and Experimental Botany, 65, 183–188. https://doi.org/10.1016/j.envexpbot.2008.08.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Anielly Monteiro Melo, Márcio Rosa, Luciana Arantes Dantas, Paulo Sérgio Pereira, Sebastião Carvalho Vasconcelos Filho, Lucas Anjos de Souza, Fernando Higino de Lima e Silva, Fabiano Guimarães Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.