Wheat seedlings affected by a hormonal plant growth promoter

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9975

Keywords:

Triticum aestivum; Synthetic vegetal hormone; Root growth.

Abstract

Synthetic hormonal plant growth promoter (HPGP) has been used in agriculture, especially kinetin (KIN, cytokinin), gibberellic acid (GA3, gibberellin), and indolbutyric acid (IBA, auxin). The objective of this work was to evaluate rates and methods of application of a HPGP product (0.09 g L-1 of KIN; 0.05 g L-1 of GA3; 0.05 g L-1 of IBA) and its effects on wheat seedling growth. Two independent experiments were carried out in a greenhouse. The first was performed on Germitest® paper and the second in soil. In both cases, it was used a completely randomized design. The first trial, with 10 replicates, was carried out in a 2 × 2 × 4 factorial arrangement, being two wheat genotypes, two HPGP rates applied on the seeds, and four periods of seedling growth, totaling 160 experimental units. The second trial had four replicates, with treatments disposed in a 2 × 2 × 2 factorial arrangement, being two wheat genotypes, two HPGP rates applied on the seeds, and two HPGP rates applied on the leaves, totaling 32 experimental units. It was evaluated the growth of roots (number of roots/seedling and total root length/seedling) and the growth of leaves (length, width, and area). The application of HPGP on the seeds delayed the initial root growth and the leaf area expansion. However, this inhibitory effect was reversed along with the advance of seedling age. The combined application of HPGP on the seeds and on the leaves caused an antagonistic effect, with systematic growth reduction of wheat seedling roots.

References

Afzal, I., Basra, S. M. A., Cheema, M. A., Farooq, M., Jafar, M. Z., Shahid, M., & Yasmeen, A. (2013). Seed priming: A shotgun approach for alleviation of salt stress in wheat. International Journal of Agriculture & Biology, 15(6), 1199‒1203.

Bahrani, A., & Pourreza, J. (2012). Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Applied Sciences Journal, 18(5), 633‒641. https://doi.org/10.5829/idosi.wasj.2012.18.05.1372

Bassoi, M. C., Riede, C. R., Campos, L. A. C., Foloni, J. S. S., Nascimento Junior, A., Arruda, K. M., & Silva, S. R. (2019). Cultivares de trigo e triticale BRS e IPR ‒ Embrapa e Iapar. Londrina (PR): Embrapa Soja. Recuperado de: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/196055/1/Catalogo-trigo2019-1.pdf

Bewley, J. D., & Black, M. (1982). Physiology and biochemistry of seed in relation to germination: Viability, dormancy and environmental control. Berlin: Springer-Verlag.

Carvalho, N. M., & Nakagawa, J. (2012). Sementes: Ciência, tecnologia e produção. Jaboticabal: FUNEP.

Catão, H. C. R. M., Magalhães, H. M., Sales, N. L. P., Brandão Júnior, D. S., & Rocha, F. S. (2013). Incidência e viabilidade de sementes crioulas de milho naturalmente infestadas com fungos em pré e pós-armazenamento. Ciência Rural, 43(5), 764‒770. https://doi.org/10.1590/S0103-84782013000500002

[CONAB] Companhia Nacional de Abastecimento. (2020a). Série histórica das safras ‒ Trigo. Brasília: Companhia Nacional de Abastecimento. Recuperado de: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=30

[CONAB] Companhia Nacional de Abastecimento. (2020b). Trigo ‒ Análise mensal (Junho 2020). Brasília: Companhia Nacional de Abastecimento. Recuperado de: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-trigo

Cruz, C. D. (2013). GENES – a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

Euclydes, R. F. (1983). Manual de utilização do programa SAEG (Sistema para Análises Estatísticas e Genéticas). Viçosa: Universidade Federal de Viçosa.

[FAO] Food and Agriculture Organization. (2014). International soil classification system for naming soils and creating legends for soil maps. World reference base for soil resources. Rome: Food and Agriculture Organization of the United Nations.

Georgin, J., Lazzari, L., Lamego, F. P., & Camponogara, A. (2014). Desenvolvimento inicial de trigo (Triticum aestivum) com uso de fitohormônios, zinco e inoculante no tratamento de sementes. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 18(4), 1318‒1325. https://doi.org/10.5902/2236117014615

Köche, J. C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Petrópolis: Vozes.

[MAPA] Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Brasília: MAPA/ACS. Recuperado de: https://www.abrates.org.br/files/regras_analise_de_sementes.pdf

Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas. 2. ed., Londrina: ABRATES.

Oliveira, A. J., Garrrido, W. E., Araujo, J. D., & Lourenço, S. (1991). Métodos de pesquisa em fertilidade do solo. Brasília: Embrapa.

Oliveira, S., Lemes, E. S., Neves, E. H., Ritter, R., Mendonça, A. O., & Meneghello, G. E. (2020). Uso de biorregulador e seus reflexos na produção e na qualidade de sementes de trigo. Scientia Plena, 16(1), 1‒11. https://doi.org/10.14808/sci.plena.2020.011501

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UAB/NTE/UFSM. Recuperado de: https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Cunha, T. J. F., & Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos. Brasília: Embrapa Informação Tecnológica.

Silva, S. R., & Pires, J. L. F. (2017). Resposta do trigo BRS Guamirim à aplicação de Azospirillum, nitrogênio e substâncias promotoras do crescimento. Revista Ciência Agronômica, 48(4), 631‒638. https://doi.org/10.5935/1806-6690.20170073

Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal. Porto Alegre: Artmed.

Tennant, D. A. (1975). A test of a modified line intersect method of estimating root length. Journal of Ecology, 63(3), 995−1001. https://doi.org/10.2307/2258617

Tsegay, B. A., & Andargie, M. (2018). Seed priming with gibberellic acid (GA3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum var. abyssinicum A. Braun and Lathyrus sativus L. Journal of Crop Science and Biotechnology, 21(3), 261−267. https://doi.org/10.1007/s12892-018-0043-0

[USDA] United States Department of Agriculture. (2020). World agricultural production. Washington: United States Department of Agriculture. Recuperado de: https://apps.fas.usda.gov/psdonline/circulars/production.pdf

Yu, H., Wang, L. L., Chen, X.Y., Yang, Y., Yu, X. R., Wang, Z., & Xiong, F. (2016). Effects of exogenous gibberellic acid and abscisic acid on germination, amylases, and endosperm structure of germinating wheat seeds. Seed Science and Technology, 44, 64‒76. https://doi.org/10.15258/sst.2016.44.1.09

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415‒421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Published

22/11/2020

How to Cite

SILVA, S. R.; MARTINS, G. Z. Wheat seedlings affected by a hormonal plant growth promoter. Research, Society and Development, [S. l.], v. 9, n. 11, p. e4769119975, 2020. DOI: 10.33448/rsd-v9i11.9975. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9975. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences