Condiciones de cultivo y caracterización bioquímica de las enzimas proteolíticas con acción fibrinolítica obtenidas a partir de hongos de los últimos diez años
DOI:
https://doi.org/10.33448/rsd-v11i14.36652Palabras clave:
Proteasas fibrinolíticas; Hongos; Terapia trombolítica; Fibrina.Resumen
Las enzimas fibrinolíticas son proteasas que degradan la fibrina presente en los coágulos sanguíneos y pueden obtenerse a través de extractos fúngicos. Por tanto, el objetivo de este trabajo fue analizar toda la información sobre la producción y caracterización bioquímica de proteasas fibrinolíticas de especies de hongos publicada en artículos de los últimos diez años. La investigación se realizó en ocho bases de datos electrónicas nacionales e internacionales utilizando varios términos clave. Los resultados obtenidos se analizaron de acuerdo a cada paso. En la primera etapa, los títulos y resúmenes de todos los trabajos fueron analizados de forma independiente; en la segunda etapa se leyeron todos los trabajos y se excluyeron aquellos que no cumplían con los criterios de inclusión. Se revisaron los documentos restantes y se tabularon y compararon los datos. Como resultado se encontró que se obtuvieron enzimas con acción fibrinolítica de ocho especies de hongos en el periodo de esta investigación: P. sajor-cashew, P. ferulae, P. ostreatus, L. shimeji, A. polytricha, H. erinaceum, C. comatus y C. militaris. Las enzimas se identificaron como proteasas SPPs, metaloproteasas, serina proteasas y serina metaloproteasas. Además, Se han identificado dos métodos para determinar la actividad fibrinolítica, el método de placas de fibrina y/o la formación de trombos artificiales. La masa molecular de estas enzimas osciló entre ~18 y 66 kDa y, para la caracterización bioquímica de los extractos, el pH osciló entre 4,0 y 9,5 y la temperatura óptima entre 25 y 70 ºC. A través de la revisión se constató que los hongos son fuente de proteasas fibrinoliticas e que estos pueden actuar para el tratamiento de la trombosis.
Citas
Acosta, G. A., Fonseca, M. I., Fariña, J. I., & Zapata, P. D. (2022). Exploring Agaricomycetes from the Paranaense rainforest (Misiones, Argentina) as an unconventional source of fibrinolytic enzymes. Mycologia. 114(2):242-253.10.1080/00275514.2022.2035148
Aguilar, J. G., & Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103, 253-262.
Ali, A. M. M., et al. (2022). Production of fibrinolytic enzymes during food production. In: Current Developments in Biotechnology and Bioengineering, p. 157-187. https://doi.org/10.1016/B978-0-12-823506-5.00018-7
Ali, A. M., & Bavisetty, S. C. B. (2020). Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: a comprehensive review. International Journal of Biological Macromolecules, v. 163, p. 1498-1517.
Ali, S. M., Ling, T. C., Sekaran, M., Y. S. T., Jegadeesh, R., & Vikineswary, S. (2014). Recovery and partial purification of fibrinolytic enzymes of Auricularia polytricha (Mont.) Sacc by an aqueous two-phase system. Separation and Purification Technology, 122 359–366. http://dx.doi.org/10.1016/j.seppur.2013.11.016
Altaf, F., Wu, S., & Kasim, V. (2021). Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Front Mol Biosci, 8:680397. 10.3389/fmolb.2021.680397.
Ângelo, R. S. (2010). Enzimas hidrolíticas. In: Esposito, E., Azevedo, J. L. (Org.). Fungos: uma introdução à biologia, bioquímica e biotecnologia. Caxias do Sul: Educs, (2ª edição).
Anna, D., Protopopova, R. I., Litvinov, D. K., Galanakis, C., Nagaswami, N. A., Barinov, A. R., Mukhitov, Dmitry, V. K., & John. W. W. (2017). Morphometric characterization of fibrinogen’s αC regions and their role in fibrin self-assembly and molecular organization. Nanoscale. 10.1039/c7nr04413e
Astrup, T., & Mullertz, S. (1952). The fibrin platemethod for estimating of fibrinolyticactivity. Arch Biochem Biophys; 40: 346–51p. http://dx.doi.org/10.1016/0003-9861(52)90121-5
Bajaj, B. K., Singh, S., Khullar, M., Singh, K., & Bhardwaj, S. (2014). Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues. Braz Arch Biol Technol 57:653–662. https://doi.org/10.1590/S1516-8913201402132
Banerjee, G., & Ray, A. K. (2017). Impact of microbial proteases on biotechnological industries. Biotechnology and Genetic Engineering Reviews, 33(2), 119-143.
Barbosa, E. E. P., Pimenta, L., Brito, A. K. P., Martim, S. R., & Teixeira, M. F. S. (2020). Cultivo de cogumelo comestível em resíduos lignocelulósicos de floresta tropical para produção de proteases / Mushroom cultivation edible in lignocellulosic residues from rainforest for protease production. Brazilian Journal of Development, 6(11), 92475–92485. https://doi.org/10.34117/bjdv6n11-598
Benmrad, O., M., Mechri, S., Zaraî, J. N., et al. (2019). Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnol 19, 43. https://doi.org/10.1186/s12896-019-0536-4
Bezerra, V. H. S., Cardoso, S. L., Fonseca-Bazzo, Y., Silveira, D., Magalhães, P. O., & Souza, P. M. (2021). Protease Produced by Endophytic Fungi: A Systematic Review. Molecules, 26 (22):7062. Published 2021 Nov 22.10.3390/molecules26227062
Brito, A. K. P., Pimenta, L., Barbosa, E. E. P., Batista, S. C. P., Coelho, M. P. S. L. V., Castillo, T. A., Martim, S. R., & Teixeira, M. F. S. (2021). Evaluation of tropical forest substrates for cultivation and production of proteases by Pleurotus djamor. Research, Society and Development, 10(3), e31810313385. https://doi.org/10.33448/rsd-v10i3.13385
Buba, J. C. (2018). Produção de protease com atividade fibrinolítica por cultivo submerso de Mucor subtilissimus em biorreator. Universidade de São Paulo. http://www.teses.usp.br/teses/disponiveis/3/3137/tde28022018-133041/pt-br.php
Cardoso, K. B. B., Nascimento, M. C., Batista, A. C., Oliveira, V. M., Nascimento, T. P., Batista, J. M. S., Costa, R. M. P. B., Pastrana, L., & Porto, A. L. F. (2022). Systematic analysis on the obtaining of fibrinolytic fungi enzymes. Research, Society and Development, 11(2), e13611225449, 2022. 10.33448/rsd-v11i2.25449.
Cho, I. H., Choi, E. S., Lim, H. G., & Lee, H. H. (2004). Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J Biochem Mol Biol, 37 (2):199-205.10.5483/bmbrep.2004.37.2.199.
Choi, B. S., Sapkota, K., Choi, J. H., Shin, C. H., Kim, S., & Kim, S. J. (2013). Herinase: a novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceum. Appl Biochem Biotechnol, Jun; 170 (3):609-22. 10.1007/s12010-013-0206-2. Epub 2013 Apr 7. PMID: 23564433.
Choi, J. H., Kim, D. W., Kim, S., & Kim, S. J. (2016). Purification and partial characterization of a fibrinolytic enzyme from the fruiting body of the medicinal and edible mushroom Pleurotus ferulae. Prep Biochem Biotechnol, Jul 3;47(6):539-546. 10.1080/10826068.2016.1181083.
Coelho, M., Figueiredo, A. S. F., Martim, S. R. M., & Teixeira, M. F. S. T. (2022). Ciclo de produção de cogumelos comestíveis cultivados em resíduos lignocelulósicos da fruticultura Amazônica: um estudo de caso. Concilium, 284–294. https://doi.org/10.53660/CLM-116-138
Das, G., & Prasad, M. P. (2010). Isolation, purification & mass production of protease enzyme from Bacillus subtilis. International Research Journals of Microbiology, 1(2), 026-031, April.
Erez, E., Fass, D., & Bibi, E. (2009). How intramembrane proteases bury hydrolytic reactions in the membrane. Nature, 459 (7245):371-378.10.1038/nature08146
Fasim, A., More, V. S., & More, Sunil, S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, v. 69, p. 68-76. https://doi.org/10.1016/j.copbio.2020.12.002.
Feijoo-Siota, L., and& Villa, T. G. (2011). Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. Food Bioprocess Technol, 4:1066–1088., 4(6), 1066-1088, 2011. 10.1007/s11947-010-0431-4
Ferreira, C. N., Sousa, M. O., Dusse, L. M. S., & Carvalho, M. G. (2010). O novo modelo da cascata de coagulação baseado nas superfícies celulares e suas implicações. Rev Bras Hematol Hemoter, 32(5), 416-421. https://doi.org/10.1590/S1516-84842010000500016
Flute, P. T. (1964). Haemorrhage and fibrinolysis. Proceedings of the Royal Society of Medicine, 57(7), 603–606.
Fonseca, T. R. B. (2013). Pleurotus ostreatoroseus DPUA 1720: Avaliação do Crescimento, Produção de Basidioma e Determinação da Atividade Proteolítica em Resíduos Agroindustriais. Universidade Federal do Amazonas.
Galo, L. A., & Colombo, M. F. (2009). Espectrofotometria de longo caminho óptico em espectrofotômetro de duplo-feixe convencional: uma alternativa simples para investigações de amostras com densidade óptica muito baixa. Química Nova, 32 (2), 488-492. https://doi.org/10.1590/S0100-40422009000200036
Katrolia, P., Liu, X., Zhao, Y., Kopparapu, N. K., & Zheng, X. (2020). Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). Int J Biol Macromol, 146:897-906. 10.1016/j.ijbiomac.2019.09.212
Kollman, J. M., Pandi, L., Sawaya, M. R., Riley, M., & Doolittle, R. F. (2009). Crystal structure of human fibrinogen. Biochemistry, 48(18):3877-3886.10.1021/bi802205g
Li, G., Liu, X., Cong, S., Deng, Y., & Zheng, X. (2021). A novel serine protease with anticoagulant and fibrinolytic activities from the fruiting bodies of mushroom Agrocybe aegerita. Int J Biol Macromol, 168:631-639. 10.1016/j.ijbiomac.2020.11.118
Liu, X. L., Zheng, X. Q., Qian, P. Z., Kopparapu, N. K., Deng, Y. P., Nonaka, M., & Harada, N. (2014). Purification and characterization of a novel fibrinolytic enzyme from culture supernatant of Pleurotus ostreatus. J Microbiol Biotechnol, Feb 28;24(2):245-53. 10.4014/jmb.1307.07063.
Liu, X. L., Zheng, X. Q., & Zhang, J. K. (2012). Production of a Fibrinolytic Enzyme from Coprinus comatus YY-20. Applied Mechanics and Materials, Vols. 138–139, pp. 1195–1201. https://doi.org/10.4028/www.scientific.net/amm.138-139.1195
Machado, A. R. G., Teixeira, M. F. S., Kirsch, L. S. M., Campelo, C. L., & Oliveira, I. M. A. (2016). Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi Journal of Biological Sciences, 23(5): 621-627. DOI: https://doi.org/10.1016/j.sjbs.2015.07.002
Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., & Yoo, J. C. (2011). A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624. Process Biochemistry, v. 46, p. 1449–1455. https://doi.org/10.1016/j.procbio.2011.03.016
Mine, Y., Wong, A. H. K., & Jinag, B. (2005). Fibrinolytic enzymes in Asian traditional fermented foods. Food Research International, 38:243–250. https://doi.org/10.1016/j.foodres.2004.04.008
Moon, S. M., Kim, J. S., Kim, H. J., Choi, M. S., Park, B. R., Kim, S. G., Ahn, H., Chun, H. S., Shin, Y. K., Kim, J. J., Kim, D. K., Lee, S. Y., Seo, Y. W., Kim, Y. H., & Kim, C. S. (2014). Purification and characterization of a novel fibrinolytic α chymotrypsin like serine metalloprotease from the edible mushroom, Lyophyllum shimeji. J Biosci Bioeng, May;117(5):544-50. 10.1016/j.jbiosc.2013.10.019.
Naeem, M., Manzoor, S., Abid, M. U. H., Tareen, M. B. K., Asad, M., Mushtaq, S., Ehsan, N., Amna, D., Xu, B., & Hazafa, A. (2022). Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J. Fungi, 8, 109. https://doi.org/10.3390/jof8020109
Pechik, I., Yakovlev, S., Mosesson, M. W., Gilliland, G. L., & Medved, L. (2006). Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry, Mar 21;45 (11):3588-97. 10.1021/bi0525369. PMID: 16533041; PMCID: PMC2531209.
Pimenta, L., Barbosa, E. E. P., Brito, A. K. P. de, Martim, S. R., & Teixeira, M. F. S. (2021). Processo eco-amigável para selecionar substrato Lignocelulósico para produção de peptidases ácidas / Eco-friendly process to select Lignocellulosic substrate for the production of acid peptidases. Brazilian Journal of Development, 7(1), 3469–3479. https://doi.org/10.34117/bjdv7n1-234
Ruiz, M. A., Greco, O. T., Braile, D. M. (2009). Fator de impacto: importância e influência no meio editorial, acadêmico e científico. Rev Bras Cir Cardiovasc. 24(3): 273-278. https://doi.org/10.1590/S0102-76382009000400004
Shafee, T. (2014). Evolvability of a Viral Protease: Experimental Evolution of Catalysis, Robustness and Specificity. University of Cambridge: Cambridge, UK.
Sharma, C., Osmolovskiy, A., & Singh, R. (2021). Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics. 2021;13 (11):1880. Published Nov 5.10.3390/pharmaceutics13111880
Sharma, M., & Bajaj, B. K. (2017). Optimization of bioprocess variables for production of a thermostable and wide range pH stable carboxymethyl cellulase from Bacillus subtilis MS 54 under solid state fermentation. Environ Prog Sustain Energy. doi:10.1002/ep.12557
Souza, H. Q., et al. (2008). Seleção de Basidiomycetes da Amazônia para produção de enzimas de interesse biotecnológico. Ciência e Tecnologia de Alimentos, v. 28, pg. 116-124, Campinas, SP.
Strehl, L. (2005). O fator de impacto do ISI e a avaliação da produção científica: aspectos conceituais e metodológicos. Ci. Inf., Brasília, 34(1), 19-27. https://wp.scielo.org/wp-content/uploads/STREHL-L..pdf
Wang, J., Wu, C., Chen, Y., Chen, C., Hu, S., & Chang, S. (2014). Antihyperglycemic activity of exopolysaccharide produced by mushroom Pleurotus ferulae with submerged liquid culture on streptozotocin-induced diabetic rats. Journal of Food and Nutrition Research, 2(7), 419-424.
Weisel, J. W., & Litvinov, R. I. (2017). Fibrin Formation, Structure and Properties. Subcell Biochem, 82: 405–456. 10.1007/978-3-319-49674-0_13
Wu, S., et al. (2021). Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed., 60,88–119. https://doi.org/10.1002/anie.202006648
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Romário da Silva Santana; Viviane Gonçalves de Farias; Elison de Souza Sevalho; Kadmiel Candido; Klaramelia Consuelo Ramón Carpio; Waldireny Rocha Gomes; Rosany Piccolotto Carvalho
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.