Los órganos remotos responden de manera diferente al tratamiento con curcumina después de una lesión por isquemia/reperfusión intestinal

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.9660

Palabras clave:

Estrés oxidativo; Inflamación; Arteria Mesentérica Superior.

Resumen

Nuestro objetivo fue investigar los efectos de 45 min de isquemia seguidos de 72 h de reperfusión intestinal (IR) en el íleon, hígado, pulmones y riñones en ratas Wistar y las respuestas de estos órganos al tratamiento con curcumina. La isquemia se indujo ocluyendo la arteria mesentérica superior. Las ratas se trataron con 40 mg / kg de curcumina. Analizamos el estrés oxidativo y la inflamación. La IR intestinal produjo una reducción de los niveles de glutatión en el intestino, los pulmones y los riñones y un aumento de los niveles de hidroperóxido de lípidos en todos los órganos. Se observó un aumento de la actividad enzimática de la catalasa en todos los órganos y un aumento de la actividad de la superóxido dismutasa en el íleon y los pulmones. Los niveles de glutatión s-transferasa aumentaron solo en los riñones. La mieloperoxidasa aumentó en los cuatro órganos y la n-acetil-glicosaminidasa aumentó sólo en el íleon y los pulmones. La curcumina previno todos los cambios en el íleon y el hígado. En los pulmones, la curcumina no tuvo ningún efecto sobre la n-acetil-glicosaminidasa. La curcumina no previno los cambios en el glutatión reducido, los hidroperóxidos de lípidos o la mieloperoxidasa en los riñones. La IR intestinal provocó estrés oxidativo e inflamación en el íleon, los pulmones y los riñones y, en menor grado, en el hígado. Debido a su distribución sistémica, la curcumina previno cambios principalmente en el íleon, pulmones e hígado y en menor grado en los riñones.

Citas

Acosta, S., & Björck, M. (2003). Acute thrombo-embolic occlusion of the superior mesenteric artery: a prospective study in a well defined population. Eur J Vasc Endovasc Surg, 26(2), 179–183. https://www.ncbi.nlm.nih.gov/pubmed/12917835

Aebi, H. (1984). Catalase in vitro. Methods Enzymol, 105, 121–126. https://www.ncbi.nlm.nih.gov/pubmed/6727660

Akinrinmade, J. F., Akinrinde, S. A., Odejobi, A., & Oyagbemi, A. A. (2015). Evidence of attenuation of intestinal ischemia-reperfusion injury following pre-treatment with methanolic extracts from Chromolena odorata in rats. J Complement Integr Med, 12(1), 23–32. https://doi.org/10.1515/jcim-2014-0034

Aldemir, D., Tufan, H., Tecder-Unal, M., Türkoğlu, S., Oğüs, E., Kayhan, Z., & Haberal, M. (2003). Age-related alterations of oxidative stress and arginase activity as a response to intestinal ischemia-reperfusion in rat kidney and liver. Transplant Proc, 35(7), 2811–2815. https://www.ncbi.nlm.nih.gov/pubmed/14612127

Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys, 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004

Barut, F., Ozacmak, V. H., Turan, I., Sayan-Ozacmak, H., & Aktunc, E. (2016). Reduction of Acute Lung Injury by Administration of Spironolactone After Intestinal Ischemia and Reperfusion in Rats. Clin Invest Med, 39(1), E15-24. https://www.ncbi.nlm.nih.gov/pubmed/26833169

Borges, S. C., Ferreira, P. E. B., da Silva, L. M., de Paula Werner, M. F., Irache, J. M., Cavalcanti, O. A., & Buttow, N. C. (2018). Evaluation of the treatment with resveratrol-loaded nanoparticles in intestinal injury model caused by ischemia and reperfusion. Toxicology, 396–397. https://doi.org/10.1016/j.tox.2018.02.002

Börjesson, A., Wang, X., Sun, Z., Wallén, R., Deng, X., Johansson, E., & Andersson, R. (2000). Effects of N-acetylcysteine on pulmonary macrophage activity after intestinal ischemia and reperfusion in rats / with invited commentaries. Dig Surg, 17(4), 379. https://doi.org/10.1159/000018882

Chen, G. Y., & Nuñez, G. (2010). Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 10(12), 826–837. https://doi.org/10.1038/nri2873

Chung, H. Y., Baek, B. S., Song, S. H., Kim, M. S., Huh, J. I., Shim, K. H., Kim, K. W., & Lee, K. H. (1997). Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha), 20(3), 127–140. https://doi.org/10.1007/s11357-997-0012-2

Cuzzocrea, S., Chatterjee, P. K., Mazzon, E., Dugo, L., De Sarro, A., de Loo, F. A., Caputi, A. P., & Thiemermann, C. (2002). Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock, 18(2), 169–176. https://www.ncbi.nlm.nih.gov/pubmed/12166782

Demir, M., Amanvermez, R., Kamalı Polat, A., Karabıçak, I., Cınar, H., Kesicioğlu, T., & Polat, C. (2014). The effect of silymarin on mesenteric ischemia-reperfusion injury. Med Princ Pract, 23(2), 140–144. https://doi.org/10.1159/000356860

Faith, M., Sukumaran, A., Pulimood, A. B., & Jacob, M. (2008). How reliable an indicator of inflammation is myeloperoxidase activity? Clin Chim Acta, 396(1–2), 23–25. https://doi.org/10.1016/j.cca.2008.06.016

Fan, Z., Jing, H., Yao, J., Li, Y., Hu, X., Shao, H., Shen, G., Pan, J., Luo, F., & Tian, X. (2014). The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxid Med Cell Longev, 2014, 191624. https://doi.org/10.1155/2014/191624

Fayez, A. M., Awad, A. S., El-Naa, M. M., Kenawy, S. A., & El-Sayed, M. E. (2014). Beneficial effects of thymoquinone and omega-3 on intestinal ischemia/reperfusion-induced renal dysfunction in rats. Bulletin of Faculty of Pharmacy, Cairo University, 52(2), 171–177. https://doi.org/10.1016/J.BFOPCU.2014.05.003

Grootjans, J., Lenaerts, K., Derikx, J. P., Matthijsen, R. A., de Bruïne, A. P., van Bijnen, A. A., van Dam, R. M., Dejong, C. H., & Buurman, W. A. (2010). Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am J Pathol, 176(5), 2283–2291. https://doi.org/10.2353/ajpath.2010.091069

Guzel, A., Kanter, M., Yucel, A. F., & Erboga, M. (2013). Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion. Toxicol Ind Health, 29(7), 633–642. https://doi.org/10.1177/0748233711430984

Hakgüder, G., Akgür, F. M., Ateş, O., Olguner, M., Aktuğ, T., & Ozer, E. (2002). Short-term intestinal ischemia-reperfusion alters intestinal motility that can be preserved by xanthine oxidase inhibition. Dig Dis Sci, 47(6), 1279–1283. https://www.ncbi.nlm.nih.gov/pubmed/12064802

Horie, Y., Wolf, R., Miyasaka, M., Anderson, D. C., & Granger, D. N. (1996). Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. Gastroenterology, 111(3), 666–673. https://www.ncbi.nlm.nih.gov/pubmed/8780571

Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat Med, 17(7), 796–808. https://doi.org/10.1038/nm.2399

Jankun, J., Wyganowska-Świątkowska, M., Dettlaff, K., Jelińska, A., Surdacka, A., Wątróbska-Świetlikowska, D., & Skrzypczak-Jankun, E. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (Review). Int J Mol Med, 37(5), 1151–1158. https://doi.org/10.3892/ijmm.2016.2524

Jiang, Z. Y., Woollard, A. C., & Wolff, S. P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, 26(10), 853–856. https://www.ncbi.nlm.nih.gov/pubmed/1795606

Jones, D. P. (2002). Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol, 348, 93–112. https://www.ncbi.nlm.nih.gov/pubmed/11885298

Kiliç, K., Hanci, V., Selek, S., Sözmen, M., Kiliç, N., Citil, M., Yurtlu, D. A., & Yurtlu, B. S. (2012). The effects of dexmedetomidine on mesenteric arterial occlusion-associated gut ischemia and reperfusion-induced gut and kidney injury in rabbits. J Surg Res, 178(1), 223–232. https://doi.org/10.1016/j.jss.2012.03.073

Lamaita, R. M., Pontes, A., Belo, A. V, Caetano, J. P., Andrade, S. P., Cândido, E. B., Carneiro, M. M., & Silva-Filho, A. L. (2012). Evaluation of N-acetilglucosaminidase and myeloperoxidase activity in patients with endometriosis-related infertility undergoing intracytoplasmic sperm injection. J Obstet Gynaecol Res, 38(5), 810–816. https://doi.org/10.1111/j.1447-0756.2011.01805.x

Lee, M. C., Velayutham, M., Komatsu, T., Hille, R., & Zweier, J. L. (2014). Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry, 53(41), 6615–6623. https://doi.org/10.1021/bi500582r

Lin, J. K. (2007). Molecular targets of curcumin. Adv Exp Med Biol, 595, 227–243. https://doi.org/10.1007/978-0-387-46401-5_10

Lindeström, L. M., & Ekblad, E. (2004). Structural and neuronal changes in rat ileum after ischemia with reperfusion. Dig Dis Sci, 49(7–8), 1212–1222. http://www.ncbi.nlm.nih.gov/pubmed/15387349

Mallick, I. H., Yang, W., Winslet, M. C., & Seifalian, A. M. (2004). Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci, 49(9), 1359–1377. http://www.ncbi.nlm.nih.gov/pubmed/15481305

Marczylo, T. H., Steward, W. P., & Gescher, A. J. (2009). Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem, 57(3), 797–803. https://doi.org/10.1021/jf803038f

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47(3), 469–474. https://www.ncbi.nlm.nih.gov/pubmed/4215654

McCord, J. M. (1985). Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med, 312(3), 159–163. https://doi.org/10.1056/NEJM198501173120305

Montalto, M. C., Hart, M. L., Jordan, J. E., Wada, K., & Stahl, G. L. (2003). Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol, 285(1), G197-206. https://doi.org/10.1152/ajpgi.00029.2003

Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11), 1287–1312. https://www.ncbi.nlm.nih.gov/pubmed/11728801

Onder, A., Kapan, M., Gümüş, M., Yüksel, H., Böyük, A., Alp, H., Başarili, M. K., & Firat, U. (2012). The protective effects of curcumin on intestine and remote organs against mesenteric ischemia/reperfusion injury. Turk J Gastroenterol, 23(2), 141–147. https://www.ncbi.nlm.nih.gov/pubmed/22706742

Parks, D. A., & Granger, D. N. (1988). Ischemia-reperfusion injury: a radical view. Hepatology, 8(3), 680–682. https://www.ncbi.nlm.nih.gov/pubmed/3286463

Paterno, F., & Longo, W. E. (2008). The etiology and pathogenesis of vascular disorders of the intestine. Radiol Clin North Am, 46(5), 877–885, v. https://doi.org/10.1016/j.rcl.2008.06.005

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Saidi, S. A., Ncir, M., Chaaben, R., Jamoussi, K., van Pelt, J., & Elfeki, A. (2017). Liver injury following small intestinal ischemia reperfusion in rats is attenuated by Pistacia lentiscus oil: antioxidant and anti-inflammatory effects. Arch Physiol Biochem, 123(4), 199–205. https://doi.org/10.1080/13813455.2017.1302961

Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 64(4), 353–356. https://doi.org/10.1055/s-2006-957450

Stallion, A., Kou, T. D., Miller, K. A., Dahms, B. B., Dudgeon, D. L., & Levine, A. D. (2002). IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res, 105(2), 145–152. https://www.ncbi.nlm.nih.gov/pubmed/12121701

Stoney, R. J., & Cunningham, C. G. (1993). Acute mesenteric ischemia. Surgery, 114(3), 489–490. http://www.ncbi.nlm.nih.gov/pubmed/8367801

Thomas, C. E., Morehouse, L. A., & Aust, S. D. (1985). Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem, 260(6), 3275–3280. https://www.ncbi.nlm.nih.gov/pubmed/2982854

Tiwari, V., Kuhad, A., & Chopra, K. (2011). Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother Res, 25(10), 1527–1536. https://doi.org/10.1002/ptr.3440

Turan, I., Ozacmak, H. S., Ozacmak, V. H., Barut, F., & Araslı, M. (2017). Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats. Life Sci, 189, 23–28. https://doi.org/10.1016/j.lfs.2017.08.032

Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni, J. R., & Das, P. K. (2003). Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol, 139(2), 209–218. https://doi.org/10.1038/sj.bjp.0705241

Vinardi, S., Pierro, A., Parkinson, E. J., Vejchapipat, P., Stefanutti, G., Spitz, L., & Eaton, S. (2003). Hypothermia throughout intestinal ischaemia-reperfusion injury attenuates lung neutrophil infiltration. J Pediatr Surg, 38(1), 88–91. https://doi.org/10.1053/jpsu.2003.50017

Wang, J., Yu, X., Zhang, L., Wang, L., Peng, Z., & Chen, Y. (2018). The pharmacokinetics and tissue distribution of curcumin and its metabolites in mice. Biomed Chromatogr, e4267. https://doi.org/10.1002/bmc.4267

Warholm, M., Guthenberg, C., von Bahr, C., & Mannervik, B. (1985). Glutathione transferases from human liver. Methods Enzymol, 113, 499–504. https://www.ncbi.nlm.nih.gov/pubmed/3003505

Xu, Y., Hu, N., Jiang, W., Yuan, H. F., & Zheng, D. H. (2016). Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells. Oncotarget, 7(52), 87390–87401. https://doi.org/10.18632/oncotarget.13626

Descargas

Publicado

08/11/2020

Cómo citar

BRINGHENTTI, E. .; BORGES, S. C.; NEVES, C. Q. .; BUTTOW, N. C. . Los órganos remotos responden de manera diferente al tratamiento con curcumina después de una lesión por isquemia/reperfusión intestinal. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1519119660, 2020. DOI: 10.33448/rsd-v9i11.9660. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9660. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias de la salud