Avaliação da biocompatibilidade de cimentos reparadores biocerâmicos: Estudo in vivo em ratos wistar
DOI:
https://doi.org/10.33448/rsd-v10i7.14422Palavras-chave:
Pulpotomia; Inflamação; Teste de materiais; Endodontia.Resumo
O objetivo deste estudo foi avaliar a biocompatibilidade do cimento biocerâmico reparador Biodentine® quando comparado ao MTA Branco Angelus® e hidróxido de cálcio. Para isso foram utilizados vinte e quatro ratos Wistar (n=6 animais/grupo), divididos em quatro tempos experimentais de 7, 15, 30 e 60 dias. Os animais receberam implantes subcutâneos de tubos de polietileno contendo os 3 materiais e um tubo vazio utilizado como controle. Após os períodos experimentais os animais foram eutanasiados e os tubos, juntamente com o tecido circundante, foram removidos e processados histologicamente para avalição da biocompatibilidade. Infiltrado inflamatório e espessura de cápsula fibrosa foram analisados por coloração de HE através de escores de inflamação. Os dados foram submetidos ao teste de Kruskal Wallis e Dunn (p<0,05). O Biodentine® aos 15 dias gerou menor resposta inflamatória que o controle e o Ca(OH)2 (p<0,05). No grupo hidróxido de cálcio, apartir dos 15 dias em diante houve diminuição do infiltrado inflamatório, assim como diminuição da cápsula fibrosa. O MTA Branco Angelus® mostrou capsula fibrosa fina e baixa intensidade inflamatório em todos os períodos. Após os períodos experimentais, todos materiais apresentaram inflamação leve e capsula fibrosa fina. Conclui-se que o Biodentine® demonstrou biocompatibilidade tecidual pois induziu baixa inflamação, que reduziu ao longo do tempo, comparável ao MTA Angelus Branco® e hidróxido de cálcio.
Referências
AI-Hezaimi, K., Al-Tayar, B. A., Bajuaifer, Y. S., Salameh, Z., Al-Fouzan, K., & Tay, F. R. (2011). A hybrid approach to direct pulp capping by using emdogain with a capping material. Journal of endodontics, 37(5), 667–672.
Alazrag, M. A., Abu-Seida, A. M., El-Batouty, K. M., & El Ashry, S. H. (2020). Marginal adaptation, solubility and biocompatibility of TheraCal LC compared with MTA-angelus and biodentine as a furcation perforation repair material. BMC oral health, 20(1), 298.
Benetti, F., Bueno, C. R. E., Reis-Prado, A. H., et al. (2020). Biocompatibility, Biomineralization, and Maturation of Collagen by RTR®, Bioglass and DM Bone® Materials. Brazilian Dental Journal, 31(5), 477-484.
Bernabé, P. F. E., Gomes-Filho, J. E., Rocha, W. C., Nery, M. J., Otoboni-Filho, J. A., & Dezan-Júnior, E. (2007). Histological evaluation of MTA as a root-end filling material. International Endodontic Journal, 40(10), 758-65.
Bueno, C. R. E, Valentim, D., Jardim-Junior, E. G., Mancuso, D. N., et al. (2018). Tissue reaction to Aroeira (Myracrodruon urundeuva) extracts associated with microorganisms: an in vivo study. Brazilian Oral Research, 32, e42.
Bueno, C. R. E., Valentim, D., Marques, V. A. S., Gomes-Filho, J. E., Cintra, L. T. A., Jacinto, R. C., & Dezan-Junior, E. (2016). Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Brazilian oral research, 30(1), S1806-83242016000100267.
Bueno, C. R. E., Vasques, A. M. V., Cury, M. T. S., Sivieri-Araújo, G., Jacinto, R. C., Gomes-Filho, J. E., Cintra, L. T. A., & Dezan-Júnior, E. (2019). Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clinical Oral Investigation, 23(1),169-177.
Camps, J., Déjou, J., Rémusat, M., & About, I. (2000). Factors influencing pulpal response to cavity restorations. Dental materials: official publication of the Academy of Dental Materials, 16(6), 432–440.
Chicarelli, L., Webber, M., Amorim, J., Rangel, A., Camilotti, V., Sinhoreti, M., & Mendonça, M. J. (2021). Effect of Tricalcium Silicate on Direct Pulp Capping: Experimental Study in Rats. European journal of dentistry, 15(1), 101–108.
Cintra, L. T., Ribeiro, T. A., Gomes-Filho, J. E., Bernabé, P. F., Watanabe, S., Facundo, A. C., Samuel, R. O., & Dezan-Junior, E. (2013). Biocompatibility and biomineralization assessment of a new root canal sealer and root-end filling material. Dental traumatology, 29(2), 145–150.
Cosme-Silva, L., Dal-Fabbro, R., Gonçalves, L. O., Prado, A., Plazza, F. A., Viola, N. V., Cintra, L., & Gomes Filho, J. E. (2019). Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Brazilian Oral Research, 33, e060.
Da Fonseca, T. S., da Silva, G. F., Tanomaru-Filho, M., Sasso-Cerri, E., Guerreiro-Tanomaru, J. M., & Cerri, P. S. (2016). In vivo evaluation of the inflammatory response and IL-6 immunoexpression promoted by Biodentine and MTA Angelus. International Endodontics Journal, 49(2), 145-53.
Dammaschke, T., Gerth, H. U., Züchner, H., & Schäfer, E. (2005). Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dental materials: official publication of the Academy of Dental Materials, 21(8), 731–738.
De Rossi, A., Silva, L. A., Gatón-Hernández, P., Sousa-Neto, M. D., Nelson-Filho, P., Silva, R. A., & de Queiroz, A. M. (2014). Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. Journal of endodontics, 40(9), 1362–1369.
Dezan-Júnior, E., Bueno, C. R. E., Vasques, A. M. V., De Souza, V., Nery, M. J., Otoboni Filho, J. A., Bernabé, P. F. E., Gomes-Filho, J. E., Cintra, L. T. A., Jacinto, R. C., Sivieri-Araújo, G., & Holland, R. (2021) Influence of different obturation techniques in coronal bacterial infiltration: study in dogs. Research, Society and Development, 10(4), P. E11010413884.
Eskandarizadeh, A., Shahpasandzadeh, M. H., Shahpasandzadeh, M., Torabi, M., & Parirokh, M. (2011). A comparative study on dental pulp response to calcium hydroxide, white and grey mineral trioxide aggregate as pulp capping agents. Journal of conservative dentistry: JCD, 14(4), 351–355.
Estrela, C., Holland, R. (2003). Calcium hydroxide: study based on scientific evidences. Journal of Applied Oral Science, 11(4), 269-82.
Faraco, I. M., Jr, & Holland, R. (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dental traumatology: official publication of International Association for Dental Traumatology, 17(4), 163–166.
Ford, T. R., Torabinejad, M., McKendry, D. J., Hong, C. U., & Kariyawasam, S. P. (1995). Use of mineral trioxide aggregate for repair of furcal perforations. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 79(6), 756–763.
Gomes-Filho, J. E., Watanabe, S., Lodi, C. S., Cintra, L. T., Nery, M. J., Filho, J. A., Dezan, E., Jr, & Bernabé, P. F. (2012). Rat tissue reaction to MTA FILLAPEX®. Dental traumatology: official publication of International Association for Dental Traumatology, 28(6), 452–456.
Guneser, M. B., Akbulut, M. B., & Eldeniz, A. U. (2013). Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. Journal of Endodontics, 39(3), 380-4.
Holland, R., de Souza, V., Nery, M. J., Otoboni Filho, J. A., Bernabé, P. F., & Dezan Júnior, E. (1999). Reaction of dogs' teeth to root canal filling with mineral trioxide aggregate or a glass ionomer sealer. Journal of Endodontic, 25(11), 728-30.
Holland, R., Filho, J.A., de Souza, V., Nery, M. J., Bernabé, P. F., & Dezan-Junior, E. (2001). Mineral trioxide aggregate repair of lateral root perforations. Journal of Endodontics, 27(4), 281-4.
Holland, R., de Souza, V., Nery, M. J., Bernabé, P. F. E., Filho J. A., Dezan-Junior, E., & Murata, S.S. (2002). Calcium salts deposition in rat connective tissue after the implantation of calcium hydroxide-containing sealers. Journal of Endodontics, 28(3),173-6.
Holland, R., Mazuqueli, L., de Souza, V., Murata, S. S., Dezan Júnior, E., & Suzuki, P. (2007). Influence of the type of vehicle and limit of obturation on apical and periapical tissue response in dogs' teeth after root canal filling with mineral trioxide aggregate. Journal of Endodontic, 33(6), 693-7.
ISO (2016). International Organization for Standardization. ISO 10993-6: Biological Evaluation of Medical Devices Part 6: Testes for Local Effects after Implantation. Geneva:ISO;2016.
Kim, J., Song, Y. S., Min, K. S., Kim, S. H., Koh, J. T., Lee, B. N., Chang, H. S., Hwang, I. N., Oh, W. M., & Hwang, Y. C. (2016). Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restorative Dentistry and Endodontics, 41(1), 29-36.
Koubi, G., Colon, P., Franquin, J. C., Hartmann, A., Richard, G., Faure, M. O., & Lambert, G. (2013). Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - a prospective study. Clinical oral investigations, 17(1), 243–249.
Laurent, P., Camps, J., & About, I. (2012). Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. International endodontic journal, 45(5), 439–448.
Minamikawa, H., Yamada, M., Deyama, Y., Suzuki, K., Kaga, M., Yawaka, Y., & Ogawa, T. (2011). Effect of N-acetylcysteine on rat dental pulp cells cultured on mineral trioxide aggregate. Journal of endodontics, 37(5), 637–641.
Mori, G. G., Teixeira, L. M., de Oliveira, D. L., Jacomini, L. M., & da Silva, S. R. (2014). Biocompatibility evaluation of biodentine in subcutaneous tissue of rats. Journal of endodontics, 40(9), 1485–1488.
Nowicka, A., Wilk, G., Lipski, M., Kołecki, J., & Buczkowska-Radlińska, J. (2015). Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth. Journal of endodontics, 41(8), 1234–1240.
Paranjpe, A., Zhang, H., & Johnson, J. D. (2010). Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. Journal of endodontics, 36(6), 1042–1047.
Schuurs, A. H. B., Gruythuysen, R. J. M., & Wesselink, P. R. (2000). Pulp capping with adhesive resinbased composite versus calcium hydroxide: a review. Endodontics & dental traumatology,16, 240–250.
Simsek, N., Alan, H., Ahmetoglu, F., Taslidere, E., Bulut, E. T., & Keles, A. (2015). Assessment of the biocompatibility of mineral trioxide aggregate, bioaggregate, and biodentine in the subcutaneous tissue of rats. Nigerian journal of clinical practice, 18(6), 739–743.
Sumer, M., Muglali, M., Bodrumlu, E., & Guvenc, T. (2006). Reactions of connective tissue to amalgam, intermediate restorative material, mineral trioxide aggregate, and mineral trioxide aggregate mixed with chlorhexidine. Journal of Endodontics, 32(11), 1094-6.
Torneck, C. D. (1996). Reaction of rat connective tissue to polyethylene tube implants part I. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology, 21(3), 379-87.
Tziafas, D., Alvanou, A., Panagiotakopoulos, N., Smith, A. J., Lesot, H., Komnenou, A., & Ruch, J. V. (1995). Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Archives of oral biology, 40(10), 883–893.
Valentim, D., Bueno, C. R. E., Marques, V. A. S., Vasques, A. M. V., Cury, M. T. S., Cintra, L. T. A., & Dezan-Junior, E. (2017). Calcium hydroxide associated with a new vehicle: Psidium cattleianum leaf extracts. Tissue response evaluation. Brazilian Oral Research, 3, 31:e43.
Yaltirik, M., Ozbas, H., Bilgic, B., & Issever, H. (2004). Reactions of connective tissue to mineral trioxide aggregate and amalgam. Journal of Endodontics, 30(2), 95-9.
Zmener, O., Guglielmotti, M. B., & Cabrini, R. L. (1990). Tissue response to an experimental calcium hydroxide-based endodontic sealer: a quantitative study in subcutaneous connective tissue of the rat. Endodontics and dental traumatology, 6(2), 66-72.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Diego Valentim; Carlos Roberto Emerenciano Bueno; Vanessa Abreu Sanches Marques; Francine Benetti; Ana Maria Veiga Vasques; Marina Tolomei Sandoval Cury; Ana Claudia Rodrigues da Silva; Rogério Castilho Jacinto; Gustavo Sivieri-Araujo; Luciano Tavares Angelo Cintra; Eloi Dezan-Junior
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.