Potencial antimicrobiano de fungos filamentosos cultivados em substratos renováveis
DOI:
https://doi.org/10.33448/rsd-v11i11.33958Palavras-chave:
Bioprospecção; Fungos filamentosos; Metabólitos; Atividade antimicrobiana; Resíduos agroindustriais.Resumo
A bioprospecção de metabólitos secundários com ação antimicrobiana produzida por fungos filamentosos isolados de vários ecossistemas e cultivados em resíduos agroindustriais tem considerável importância, uma vez que, concilia a descoberta de novos agentes antimicrobianos com redução de impactos ambientais e agregação de valor econômico aos resíduos. A presente pesquisa investigou o potencial de produção de metabólitos antimicrobianos por 15 fungos filamentosos cultivados em meios alternativos a base dos resíduos agroindustriais milhocina, manipueira e glicerol em diferentes combinações. Dos 15 fungos filamentosos analisados no screening preliminar, foram selecionados Paecilomyces variotii UCP 0334, Aspergillus flavus UCP 0316, Aspergillus foetidus UCP 0360, Aspergillus niger UCP 1064 e Aspergillus sp. 74M4 por apresentarem atividade antibacteriana contra todas as bactérias testadas. Após fermentação submersa nos meios contendo milhocina, manipueira e glicerol, P. variotii UCP 0334 apresentou maior atividade e espectro de ação ao exibir os maiores halos (7 a 28 mm de diâmetro) de inibição contra todas as bactérias Gram negativas e positivas testadas independentemente do tipo de meio de cultivo. Vale destacar que todos os fungos no meio alternativo contendo manipueira e glicerol (MAGLI) apresentaram atividade inibitória contra 3 bactérias com halos de inibição variando entre 9 e 15 mm. Por outro lado, o meio contendo milhocina e glicerol (MIGLI) favoreceu maior rendimento de biomassa em todos os fungos. Estes resultados estimulam mais estudos para identificação dos metabólitos secundários produzidos pelos fungos selecionados com vistas a descoberta de novas drogas antimicrobianas.
Referências
Abdel-Azeem, A., Azeem, M. A. & Khalil, W. (2019). Endophytic fungi as a new source of antirheumatoid metabolits. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 335-384. http://dx.doi.org/10.1016/B978-0-12-813820-5.00021-0
Al-Fakih, A. A. & Almaqtri, W. Q. A. (2019). Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycolog, 10(4), 191-209. doi: 10.1080/21501203.2019.1604576.
Bauer, A. M., Kirby, W. M. M., Sherris, J. C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of. Clinical Pathology. 45(4), 493-496.
Berger, L. R. R., Stamford, T. C. M., Stamford-Arnaud, T. M., De Oliveira Franco, L., Do Nascimento, A. E., Cavalcante, H. M. D. M., Macedo, R. O. & De Campos-Takaki, G. M. (2014). Effect of Corn Steep Liquor (CSL) and Cassava Wastewater (CW) on Chitin and Chitosan Production by Cunninghamella elegans and Their Physicochemical Characteristics and Cytotoxicity. Molecules, 19, 2771-2792. https://doi.org/10.3390/molecules19032771
Cen, Q. W., Wang, Z. Y., Tang, Z. X., Zhang, Y., Chen, T., Xue, D. W., Xu, M. F., Bai, X. L., Zhou, T. & Shi, L. E. (2021). Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism. LWT – Food Science and Technology, 148, 111785. https://doi.org/10.1016/j.lwt.2021.111785
Clancy, C. J. & Nguyen, M. H. (2019). Estimating the size of the U. S. market for new antibiotics with activity against carbapenem-resistant Enterobacteriaceae. Antimicrobial Agents and chemotherapy. 63, 1-5. https://aac.asm.org/content/63/12/e01733-19.abstract
Coetzee, J. C. J., Todoroy, S. D. & Gorgens, J. F. (2007). Increased production of bacteriocin ST4SA by Enterococcus mundtii ST4SA in molidified corn steep liquor. Annals of Microbiology., 57(617). https://doi.org/10.1007/BF03175363
Collignon, P. J. & Mcewen, S. A. (2019). One Health - Its Importance in Helping to Better Control Antimicrobial Resistance. Tropical Medicine and Infectious Disease, 4(22). https://doi.org/10.3390/tropicalmed4010022
Felipe, M. T., Bezerra, J., Motta, C. S. & Santos, C. (2019). A importância da liofilização na preservação de espécies do gênero Aspergillus de interesse biotecnológico. Revista UNINGÁ Review, 34(2), 1-15. https://revista.uninga.br/uningareviews/article/view/2764
Freitas, L. C., Barbosa, J. R., Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H. & Junior, R. N. C. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169. https://doi.org/10.1016/j.resconrec.2021.105466.
Frighetto, R. T. S. & Melo, I. S. (2007). Produção de antibióticos por microrganismos. Métodos utilizados no biocontrole de fitopatógenos. EMBRAPA, 1° edição, p. 83-95.
Garbayo, I., Vilchez, C., Nava-Saucedo, J. E. & Barbotin, J. N. (2003). Nitrogen, carbon, and light-mediated regulation studies of carotenoid biosynthesis in immobilized mycelia of Gibberella fujikuroi. Enzyme Microb Technol, 33(5), 629–34. 10.1016/S0141-0229(03)00182-0
Gmoser, R., Sintca, C., Taherzadeh, M. J. & Lennartsson, P. R. (2019). Combining submerged and solid-state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus N. intermedia. Waste Management, 97, 63-70. https://doi.org/10.1016/j.wasman.2019.07.039
Hopman, N. E. M., Van dijk, M. A. M., Broens, E. M., Wagenaar, J. A., Heederik, D. J. J. & Van Geijlswijk, I. M. (2019). Quantifying antimicrobial use in Dutch companion animals. Frontiers in Veterinary Science, 158(6). http://dx.doi.otg/10.3389/fvets.2019.00158
Ichikawa, T., Date, M., Ishikura, T. & Ozaki, A. (1971). Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method. Folia Microbiol., 16, 218–224. doi:10.1007/BF02884210.
Linares-Morales, J. R., Salmerón-Ochoa, I., Rivera-Chavira, B. E., Gutiérrez-Méndez, N., Pérez-Vega, S. B. & Nevárez-Moorillón, G. V. (2022). Influence of Culture Media Formulated with Agroindustrial Wastes on the Antimicrobial Activity of Lactic Acid Bacteria. Journal of Microbiology and Biotechnology, 32, 64-71. https://doi.org/10.4014/jmb.2107.07030
Lopes, F. C., Tichota, D. M. & Sauter, I. P. (2013). Active metabolites produced by Penicillium chrysogenum IFL1 growing on agro-industrial residues. Annals of Microbiology 63, 771–778. https://doi.org/10.1007/s13213-012-0532-6
Lyra, F. D. A., Gonçalves de Lima, O. Coelho, J. S. B., Albuquerque, M. M. F., Maciel, G. M., Oliveira, L. & Maciel, M. C. N. (1964). Ciclamicina e ciclacidina, dois novos antibióticos produzidos pelo Streptomyces capoamus nov sp. Anais da Academia Brasileira de Ciências, 36(3), 323-334.
Machado, W. R. C. & Burkert, J. F. M. (2015). Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus. African Journal of Microbiology Research, 9(4), 209-219.
Mahapatra & Banerjee (2010). Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris. Acta Microbiologica et Immunologica Hungarica, 57(3), 215–223. DOI: 10.1556/AMicr.57.2010.3.6
Muzammil, S., Hayat, S., Fakhar-e-Alam, M., Aslam, B., Siddique, M. H., Nisar, M. A., Saqalein, M., Atif, M., Sarwar, A., Khurshid, A., Amin, N. & Wang, z. (2018). Nanoantibiotics: future nanotecnologies to combat antibiotic resistance. Fronties in Bioscience – Elite, 10(2), 352-374. https://doi.org/10.2741/e827
Nascimento, A. G. L. C., Torre, C. L. D. & Kadowaki, M. K. (2020). Uma abordagem sobre produção de xilanases pelo fungo Thermomyces lanuginosus utilizando resíduos agroindustriais como indutor. Pesquisa científica e tecnologia em microbiologia 2, Editora: Atena, 16, 166-176. https://www.finersistemas.com/atenaeditora/index.php/admin/api/artigoPDF/30464
Ricardino, I. E. F., Souza, M. N. C. & Neto, I. F. S. (2018). Vantagens e possibilidades do reaproveitamento de resíduos agroindustriais. Revista Alimentos: ciência, tecnologia e meio ambiente, 1(8). https://revistascientificas.ifrj.edu.br/revista/index.php/alimentos/article/viewFile/1651/977
Rodrigues, T. S., Santos, A. M. R., Lima, P. C., Moura, M. E. B., Goiano, P. D. O. L. & Fontinele, D. R. S. (2018). Resistência bacteriana á antibióticos na UTI: revisão integrativa. Revista Prevenção de Infecção e Saúde (REPIS), 4(7), 1-17. https://revistas.ufpi.br/index.php/nupcis/article/view/7350
Sá-Filho, G. F., Silva, A. I. B., Costa, E. M., Nunes, L. E., Ribeiro, L. H. F., Cavalcanti, J. R. L. P., Guzen, F. P., Oliveira, L. C. & Cavalcante, J. S. (2021). Medicinal plants used in the Brazilian Caatinga and the therapeutic potencial of secondary metabolites: a review. Research, Society and Development, 10(13). https://doi.org/10.33448/rsd-v10i13.21096
Santos, I. P.; Silva, L. C. N.; Silva, M. V.; Araújo, J. M.; Cavalcanti, M. S. & Lima, V. L.M. (2015) Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontiers in Microbiology, 6:350. doi: 10.3389/fmicb.2015.00350
Silber, J., Kramer, A., Labes, A. & Tasdemir, D. (2016). From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Marine Drugs,14(7):137. doi: 10.3390/md14070137.
Silva, Á. F. S., Souza, A. F. de, Pinheiro, I. O. & Campos-Takaki, G. M. de. (2022). Green synthesis of chitosan by Cunninghamella elegans UCP 1306 using sustainable substrates mediated morphological changes. Research, Society and Development, 11(7),38211729387. DOI: 10.33448/rsd-v11i7.29387. https://rsdjournal.org/index.php/rsd/article/view/29387
Souza, A. F., Galindo, H. M., Lima, M. A.B., Ribeaux, D. R., Rodríguez, D.M., Silva A., R. F., Gusmão, N. B. & Campos-Takaki, G. M. (2020). Biotechnological Strategies for Chitosan Production by Mucoralean Strains and Dimorphism Using Renewable Substrates. International Journal of Molecular Sciences, 21(12), 4286. https://doi.org/10.3390/ijms21124286
Wang, P., Yu, J., Zhu, K., Wang, Y., Cheng, Z., Jiang, C., Dai, J. G., Wu, J. & Zhang, H. (2018). Phenolic bisabolane sesquiterpenoids from a thai mangrove endophytic fungus, Aspergillus sp. Xy 02. Fitoterapia, 127, 22-327. https://www.sciencedirect.com/science/article/abs/pii/S0367326X18301011?via%3Dihub
WHO, World Health Organization (2020). Global antimicrobial resistance and use surveillance system (GLASS). Https://www.who.int/glass/resources/publications/early-implementation-report-2020/en/
Xu, W., Li, G., Huang, X.& Luo, Z. (2020). Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcodig approach targeting the ITS2 regions. Journal Mycology, 11, 214–229. https://www.tandfonline.com/doi/full/10.1080/21501203.2020.1799878
Zhang, Y., Mu, J., Feng, Y., Kang, Y., Zhang, J., Gu, P. J., Wang, Y., Ma, L. F. & Zhu, Y. H. (2009). Broad-Spectrum Antimicrobial Epiphytic and Endophytic fungi from Marine Organisms: Isolation, Bioassay and Taxonomy. Marine Drugs, 7(2), 97-112. https://doi.org/10.3390/md7020097
Zhang, P, Li X. M., Mao, X. X., Mándi, Á., Kurtán, T. & Wang, B. G. (2016). Varioloid A, a new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Beilstein Journal of Organic Chemistry, 12, 2012-2018. https://doi.org/10.3762/bjoc.12.188
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Valberto Barbosa de Oliveira; Adriana Ferreira de Souza; Uiara Maria de Barros Lira Lins; Rosileide Fontenele da Silva Andrade; Galba Maria de Campos-Takaki; Marcos Antonio Barbosa de Lima
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.