Um método baseado em pix2pix para atenuar o viés na análise de ensaios de cicatrização de feridas
DOI:
https://doi.org/10.33448/rsd-v11i12.34271Palavras-chave:
Aprendizado de máquina; Migração de células; Análise automatizada; CGAN.Resumo
Os avanços das novas tecnologias na área de aprendizado de máquina levaram ao desenvolvimento de redes adversariais generativas condicionais com uso direto de imagens, como é o caso do modelo pix2pix. Uma aplicação potencial para o modelo pix2pix discutido neste trabalho é a análise de imagens de cicatrização de feridas ou ensaios de rasgos que são amplamente utilizados para avaliar a migração celular in vitro. A forma mais comum de avaliar os resultados do ensaio de cicatrização de feridas é detectando manualmente a área da ferida na imagem, separando a área vazia e a área ocupada por células, durante 24, 48 ou até 72 h. Embora este procedimento tenha sido apresentado há muito tempo na literatura, tem sido indicado que ele carece de objetividade, é demorado e leva a interpretações errôneas dos dados. Na tentativa de superar a falta de robustez e consistência demonstrada pela avaliação manual, este trabalho tem como objetivo implementar um método baseado no pix2pix para reduzir o viés na análise da cicatrização de feridas, ao mesmo tempo em que introduz um novo ponto de vista na análise das imagens. O viés introduzido manualmente no algoritmo de processamento de imagem apresentou desvios de até 15 % ao variar levemente uma única variável, enquanto o processamento de imagem realizado pelo modelo resultou em desvios dentro de 6 % quando comparado com a análise manual.
Referências
Abdelmotaal, H., Abdou, A. A., Omar, A. F., El-Sebaity, D. M., & Abdelazeem, K. (2021). Pix2pix conditional generative adversarial networks for scheimpflug camera color-coded corneal tomography image generation. Translational Vision Science & Technology. 10(7), 21. https://doi.org/10.1167/tvst.10.7.21
Auerbach, R., Auerbach, W., & Polakowski, I. (1991). Assays for angiogenesis: A review. Pharmacology & Therapeutics. 51(1), 1-11. https://doi.org/10.1016/0163-7258(91)90038-n
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI. 8(6), 679-698. https://doi.org/10.1109/tpami.1986.4767851
Choudhury, G. R., Ryou, M.-G., Poteet, E., Wen, Y., He, R., Sun, F., Yuan, F., Jin, K., & Yang, S.-H. (2014). Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Research. 1551, 45-58. https://doi.org/10.1016/j.brainres.2014.01.013
Favretto, G., da Cunha, R. S., Santos, A. F., Leitolis, A., Schiefer, E. M., Gregorio, P. C., Franco, C. R. C., Massy, Z., Dalboni, M. A., & Stinghen, A. E. M. (2021). Uremic endothelial-derived extracellular vesicles: Mechanisms of formation and their role in cell adhesion, cell migration, inflammation, and oxidative stress. Toxicology Letters. 347, 12-22. https://doi.org/10.1016/j.toxlet.2021.04.019
Geback, T., Schulz, M. M. P., Koumoutsakos, P., & Detmar, M. (2009). TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. BioTechniques. 46(4), 265-274. https://doi.org/10.2144/000113083
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM. 63(11), 139-144. https://doi.org/10.1145/3422622
Guo, S., & DiPietro, L. A. (2010). Factors a ecting wound healing. Journal of Dental Research. 89(3), 219-229. https://doi.org/10.1177/0022034509359125
Ieso, M. L. D., & Pei, J. V. (2018). An accurate and cost-effective alternative method for measuring cell migration with the circular wound closure assay. Bioscience Reports. 38(5). https://doi.org/10.1042/bsr20180698
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A.A. (2017). Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.632. https://doi.org/10.1109/cvpr.2017.632
Jonkman, J. E. N., Cathcart, J. A., Xu, F., Bartolini, M. E., Amon, J. E., Stevens, K. M., & Colarusso, P. (2014). An introduction to the wound healing assay using live-cell microscopy. Cell Adhesion & Migration. 8(5), 440-451. https://doi.org/10.4161/cam.36224
Justus, C. R., Leffler, N., Ruiz-Echevarria, M., & Yang, L. V. (2014). In vitro cell migration and invasion assays. Journal of Visualized Experiments. (88). https://doi.org/10.3791/51046
Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv. https://doi.org/10.48550/ARXIV.1411.1784.
Monsuur, H. N., Boink, M. A., Weijers, E. M., Roel, S., Breetveld, M., Gefen, A., van den Broek, L. J., & Gibbs, S. (2016). Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics. 49(8), 1381-1387. https://doi.org/10.1016/j.jbiomech.2016.01.040
Mouritzen, M. V. ,& Jenssen, H. (2018). Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. Journal of Visualized Experiments. (138). https://doi.org/10.3791/57691
Nunes, J. P. S., & Dias, A. A. M. (2017). ImageJ macros for the user-friendly analysis of soft-agar and wound-healing assays. BioTechniques. 62(4), 175-179. https://doi.org/10.2144/000114535
Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: A cellular perspective. Physiological Reviews. 99(1), 665-706. https://doi.org/10.1152/physrev.00067.2017
Tonnesen, M. G., Feng, X., & Clark, R. A. F. (2000). Angiogenesis in wound healing. Journal of Investigative Dermatology Symposium Proceedings. 5(1), 40-46. https://doi.org/10.1046/j.1087-0024.2000.00014.x
Velnar, T., & Gradisnik, L. (2018). Tissue augmentation in wound healing: the role of endothelial and epithelial cells. Medical Archives. 72(6), 444. https://doi.org/10.5455/medarh.2018.72.444-448
Zordan, M. D., Mill, C. P., Riese, D. J., & Leary, J. F. (2011). A high throughput, interactive imaging, bright-field wound healing assay. Cytometry Part A. 79A(3), 227-232. https://doi.org/10.1002/cyto.a.21029
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Elberth Manfron Schiefer; Andressa Flores Santos; Regiane Stafim da Cunha; Marcia Muller; Andréa Emilia Marques Stinghen; José Luis Fabris; Lucas Hermann Negri
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.