Potencial termogênico dos compostos bioativos no contexto da obesidade

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36394

Palavras-chave:

Fitoquímicos; Termogênicos; Obesidade.

Resumo

O sobrepeso e a obesidade estão se tornando mais frequentes em todo o mundo. De acordo com a Organização Mundial da Saúde (OMS), a prevalência global de obesidade quase triplicou desde 1975. A obesidade induzida pela dieta é um aspecto principal do estilo de vida sedentário moderno, hábitos alimentares e disfunções metabólicas descritas globalmente como a síndrome dos fatores de risco cardiometabólicos. Até o momento, verificou-se que alguns fitoquímicos derivados de recursos naturais comestíveis têm efeito promotor nos adipócitos termogênicos. Esses compostos naturais, como licopeno, mangiferina, cianidina-3-glicosídeo, gingerol e baicalina foram relatados como capazes de ativar a termogênese dos adipócitos através da regulação de diferentes vias de sinalização, desta forma este trabalho, objetiva realizar busca de evidências sobre o papel termogênico destes compostos no contexto da obesidade. Trata-se de uma revisão integrativa da literatura, construída a patir das seguintes etapas: elaboração da pergunta norteadora, busca ou amostragem na literatura, coleta de dados, análise crítica dos estudos incluídos, discussão dos resultados e apresentação da revisão integrativa. O processo de busca e seleção resultou na elegebilidade de 5 artigos. Os resultados relatados por cada estudo indicam que a presença de alguns fitoquímicos na dieta podem prevenir o ganho de peso corporal, remodelando o metabolismo energético do organismo através de diferentes mecanismos de ação como ativação de genes funcionais termogênicos, indução do coativador gama 1 alfa do receptor ativado por proliferador de peroxissoma (PGC1α), aumento da troca respiratória e a produção de calor do tecido adiposo.

Referências

Borah, A. K., Sharma, P., Singh, A., Kalita, K. J., Saha, S., & Borah, J. C. (2021). Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. Journal of Ethnopharmacology, 280, 114410.

Carobbio, S., Pellegrinelli, V., & Vidal-Puig, A. (2017). Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Obesity and lipotoxicity, 161-196.

Ceglarek, V. M., Guareschi, Z. M., Moreira-Soares, G., Ecker-Passarello, R. C., Balbo, S. L., Bonfleur, M. L., & Grassiolli, S. (2020). Derivação duodeno-jejunal reduz o acúmulo de lipídios no tecido adiposo marrom de ratos com obesidade hipotalâmica. ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 33.

Choi, J. H., Song, N. J., Lee, A. R., Lee, D. H., Seo, M. J., Kim, S., ... & Park, K. W. (2018). Oxyresveratrol increases energy expenditure through Foxo3a-mediated Ucp1 induction in high-fat-diet-induced obese mice. International journal of molecular sciences, 20(1), 26.

Devlin, M. J. (2015). The “skinny” on brown fat, obesity, and bone. American journal of physical anthropology, 156, 98-115.

Guedes, J. M., Pieri, B. L. D. S., Luciano, T. F., Marques, S. D. O., Guglielmo, L. G. A., & Souza, C. T. D. (2019). Exercícios físicos de resistência, hipertrofia e força muscular reduzem igualmente adiposidade, inflamação e resistência à insulina em camundongos obesos por dieta hiperlipídica. Einstein (São Paulo), 18.

Li, H., & Tang, S. (2021). Baicalin attenuates diet-induced obesity partially through promoting thermogenesis in adipose tissue. Obesity Research & Clinical Practice, 15(5), 485-490.

Li, H., Qi, J., & Li, L. (2019). Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacological research, 147, 104393

Luna-Luna, M., Medina-Urrutia, A., Vargas-Alarcón, G., Coss-Rovirosa, F., Vargas-Barrón, J., & Pérez-Méndez, Ó. (2015). Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Archives of medical research, 46(5), 392-407.

Rahman, M. S., & Kim, Y. S. (2020). Mangiferin induces the expression of a thermogenic signature via AMPK signaling during brown-adipocyte differentiation. Food and Chemical Toxicology, 141, 111415.

Saito, M., & Yoneshiro, T. (2013). Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Current opinion in lipidology, 24(1), 71-77.

Sarkar, A., & Mackie, A. R. (2020). Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Current Opinion in Colloid & Interface Science, 48, 40-52.

Schnaider, J. M., & Borges, B. E. (2021). Tecido adiposo marrom em adultos como alvo de estudo no desenvolvimento de novas terapias para o manejo e tratamento da obesidade: uma revisão integrativa. Revista de Medicina, 100(5), 460-471.

Smeets, A. J., Janssens, P. L., & Westerterp-Plantenga, M. S. (2013). Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure. The Journal of nutrition, 143(4), 442-447.

Souza, M. T. D., Silva, M. D. D., & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8, 102-106.

Tseng, Y. H., Kokkotou, E., Schulz, T. J., Huang, T. L., Winnay, J. N., Taniguchi, C. M., ... & Kahn, C. R. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454(7207), 1000-1004.

Vasconcellos, M., de Araujo, D. G., Azeredo, G. C. C., de Moraes, G. T. D. S., Vieira, I. R., Barbosa, J. M. D. S. P., ... & Pacheco, G. M. (2022). Transplante autólogo de tireoide em tecido adiposo branco. Estudo experimental. Revista da JOPIC, 6(10).

Wang, J., Li, D., Wang, P., Hu, X., & Chen, F. (2019). Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. The Journal of nutritional biochemistry, 70, 105-115.

Wang, J., Suo, Y., Zhang, J., Zou, Q., Tan, X., Yuan, T., ... & Liu, X. (2019). Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice. The Journal of nutritional biochemistry, 69, 63-72.

You, Y., Han, X., Guo, J., Guo, Y., Yin, M., Liu, G., ... & Zhan, J. (2018). Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. Journal of Functional Foods, 41, 62-71.

Downloads

Publicado

06/11/2022

Como Citar

COSTA, J. A. da .; MORAIS, L. dos S. .; FREIRE, L. M. .; GROSSI JUNIOR, S. A. .; MOURA MARTINS, T. .; HARB, A. H. .; ALVES, A. C. B. A.; SOUSA, F. M. de .; SILVA, R. S. C.; CARNEIRO, C. R. . Potencial termogênico dos compostos bioativos no contexto da obesidade. Research, Society and Development, [S. l.], v. 11, n. 14, p. e574111436394, 2022. DOI: 10.33448/rsd-v11i14.36394. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36394. Acesso em: 22 nov. 2024.

Edição

Seção

Artigos de Revisão