A Cultura Millennials: mapeamento comportamental na estimativa das gerações por meio de um modelo matemático e de inteligência artificial
DOI:
https://doi.org/10.33448/rsd-v9i9.7772Palavras-chave:
Gerações; Modelos matemáticos; Organização.Resumo
Nos tempos atuais as organizações se deparam com mudanças intensas a todo o momento, tornando a gestão de pessoas cada vez mais estratégica e propensa a buscar ferramentas de análise dos indivíduos da organização, para decifrar continuamente as expectativas dos colaboradores. Estes impactos vieram junto com o cenário dinâmico do mercado e da globalização, o que levou as empresas estudarem antecipações de movimentos dos negócios, desde a economia até o capital humano. O choque de gerações é um dos elementos relacionados com a transição da nova era digital, nessa dinâmica podemos observar os antigos e os atuais valores da população, o que torna cada dia mais desafiador manter um colaborador jovem na empresa. Considerado um dos grandes desafios para a gestão de pessoas, a retenção de talentos apresenta necessidades particulares. Neste contexto, o objetivo deste trabalho consistiu em elaborar um modelo matemático para estruturação de um software de mapeamento das características geracionais, visando aprimorar as técnicas de gestão de pessoas em uma empresa de insumos oftálmicos na cidade de Tupã-SP. Para a coleta de dados, foi realizado um questionário e aplicado em 65 colaboradores. Os dados foram tabulados e normalizados em uma planilha Microsoft Excel para realizar a análise dos dados de forma comparativa, com a data de nascimento e as respostas obtidas. Os resultados da pesquisa realizada demonstraram que o comportamento pode ser mutável ao longo do tempo, de acordo com o ambiente inserido do indivíduo, não coincidindo com as características comportamentais da sua época.
Referências
Baldrati, B. (2012). Valorizar o funcionário é o segredo da Volvo, diz chefe de RH . Recuperado de https://www.gazetadopovo.com.br/economia/valorizar-o-funcionario-eo-segredo-da-volvo-diz-chefe-de-rh-2zu1ywo0kyv862qqx3e8gqvri/.
Bonini Neto, A., Bonini, C. S. B., Bisi, B. S., Reis, A. R., & Coletta, L. F. S. (2017). Artificial Neural Network for Classification and Analysis of Degraded Soils. IEEE Latin America Transactions, 15(3), 503–509. https://doi.org/10.1109/TLA.2017.7867601
Bonini Neto, A., Bonini, C. S. B., Reis, A. R., Piazentin, J. C., Coletta, L. F. S., Putti, F. F., Heinrichs, R., & Moreira, A. (2019). Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil. Communications in Soil Science and Plant Analysis, 50(14), 1785–1798. https://doi.org/10.1080/00103624.2019.1635144
Chitero, J. G. M., Bonini Neto, A., Bonini, C. S. B., Heinrichs, R., Soares Filho, C. V., Mateus, G. P., Bisi, B. S., Costa, N. R., Piazentin, J. C., Meirelles, G. C., & Gabriel Filho, L. R. A. (2020). Analysis of the physical recovery of degraded soils via Artificial Neural Networks using a graphical interface. Research, Society and Development, 9(7), e257973719. https://doi.org/10.33448/rsd-v9i7.3719
Creswell, J. (2007). Projeto de Pesquisa: Métodos qualitativo, quantitativo e misto. 2. ed. Porto Alegre: Artmed.
Dutra, J. S. (2001). Gestão do desenvolvimento e da carreira por competência. In Gestão por competências : um modelo avançado para o gerenciamento de pessoas. São Paulo: Gente.
Eyerman, R.; Turner, B. (1998). Outline of a Theory of Generations. European Journal of Social Theory, v.1, n.1, p. 91-94. Doi:10.1177/136843198001001007
Gabriel Filho LRA, Cremasco CP, Putti FF, Chacur MGM (2011) Application of fuzzy logic for the evaluation of livestock slaughtering. Engenharia Agrícola, 31(4):813-825. DOI: http://dx.doi.org/10.1590/S0100-69162011000400019
Gabriel Filho LRA, Putti FF, Cremasco CP, Bordin D, Chacur MGM, Gabriel LRA (2016) Software to assess beef cattle body mass through the fuzzy body mass index. Engenharia Agrícola, 36(1): 179-193. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n1p179-193/2016
Gabriel Filho, L. R. A., Pigatto, G. A. S., & Lourenzani, A. E. B. S. (2015). Fuzzy rule-based system for evaluation of uncertainty in cassava chain. Engenharia Agrícola, 35(2), 350-367. DOI: 10.1590/1809-4430-Eng.Agric.v35n2p350-367/2015
Gil, A. C. (2008) . Métodos e técnicas de pesquisa social. (6a ed.), São Paulo: Atlas
Howe, R., & Strauss, W. (2000). Millennials rising: The next great generation. Vintage books.USA, New York.
Kasabov, N. K. (1998). Foundations of neural networks, fuzzy systems and knowledge engineering. (2a ed.) Massachusetts: The MIT Press.
Ladeira, W. J.(2010). Estilos de Tomada de Decisão: Uma Investigação em Gerações Diferentes. Revista de Administração da UNIMEP., 8(3), 184-206. Doi: 10.15600/1679-5350
Lima, R. (2012). Perfil das Gerações no Brasil: as Gerações X, Y, Z e seus perfis políticos. São Paulo: Baraúna.
Malafaia, G. S. (2011). Gestão estratégica de pessoas em ambientes multigeracionais. In: Congresso Nacional De Excelência Em Gestão, Rio de Janeiro. Recuperado em 22 de março de 2020, de http://www.inovarse.org/sites/default/files/T11_0452_2151.pdf.
Martínez, M. P., Cremasco, C. P., Gabriel Filho, L. R. A., Braga Junior, S. S., Bednaski, A. V., Quevedo-Silva, F., & Padgett, R. C. M. L. (2020). Fuzzy inference system to study the behavior of the green consumer facing the perception of greenwashing. Journal of Cleaner Production, 242(1), 116064. DOI: 10.1016/j.jclepro.2019.03.060
Mathworks. Matlab (MATrix LABoratory). Recuperado de http://www.mathworks.com
Minitab 18 Statistical Software (2017). [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com)
Oliveira, S. (2012). Jovens para sempre: como entender os conflitos das gerações. São Paulo: Integrare.
Putti, F. F., Gabriel Filho, L. R. A., Cremasco, C. P., Bonini Neto, A., Bonini, C. S. B., & Reis, A. R. (2017). A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids. Mathematical Biosciences, 288, 124-129. DOI: 10.1016/j.mbs.2017.03.005
Putti, F. F., Gabriel Filho, L. R. A., Silva, A. O., Ludwig, R., & Cremasco, C. P. (2014). Fuzzy logic to evaluate vitality of catasetum fimbiratum species (Orchidacea). Irriga, 19(3), 405-413. DOI: 10.15809/irriga.2014v19n3p405
Revista Exame. (2018). Você odeia os processos seletivos comuns? Estas startups também. Recuperado de https://exame.abril.com.br/especiais/voce-odeia-os-processos-seletivos-comuns-estas-startups-tambem/.
Souza, A. V., Bonini Neto, A., Piazentin, J. C., Junior, B. J. D., Gomes, E. P., Bonini, C. S. B., & Putti, F. F. (2019). Artificial neural network modelling in the prediction of bananas’ harvest. Scientia Horticulturae, 257, 108724. https://doi.org/10.1016/j.scienta.2019.108724
Teixeira, G. M; Silveira, A. C; Neto, C. P. S; Oliveira, G. (2010). A Gestão Estratégica de Pessoas. Rio de Janeiro: FGV Editora.
Tomaz, R. (2014). The invention of the tweens: youth, culture and media. Intercom - Revista Brasileira de Ciências da Comunicação, 177-202. doi: 10.1590/1809-5844 20148
Veloso, E. F. R., Dutra, J. S., & Nakata, L. E. (2008). Percepção sobre carreiras inteligentes: Diferenças entre as gerações Y, X e Baby boomers. XXXII Anais do EnAnpad. Rio de Janeiro. Recuperado de http://www.anpad.org.br/diversos/down_zips/38/GPR-A2030.pdf.
Veloso, E. F. R.; Silva, R. C.; Dutra, J. S. (2012). Diferentes Gerações e Percepções sobre Carreiras Inteligentes e Crescimento Profissional nas Organizações. Revista Brasileira de Orientação Profissional, São Paulo, 13(2), 197-207. Recuperado de http://pepsic.bvsalud.org/pdf/rbop/v13n2/07.pdf.
Viais Neto D. S., Cremasco, C. P., Bordin D., Putti, F. F., Silva Junior J. F., & Gabriel Filho, L. R. A. (2019). Fuzzy modeling of the effects of irrigation and water salinity in harvest point of tomato crop. Part I: description of the method. Engenharia Agrícola, 39(3), 294-304. DOI: 10.1590/1809-4430-eng.agric.v39n3p294-304/2019
Viais Neto D. S., Cremasco, C. P., Bordin D., Putti, F. F., Silva Junior J. F., & Gabriel Filho, L. R. A. (2019). Fuzzy modeling of the effects of irrigation and water salinity in harvest point of tomato crop. Part II: application and interpretation. Engenharia Agrícola, 39(3), 305-14. DOI: 10.1590/1809-4430-eng.agric.v39n3p305-314/2019
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Giovanna Lorenzi Pinto; Luís Roberto Almeida Gabriel Filho; Alfredo Bonini Neto; Renato Dias Baptista
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.